Author |
Michaud, G. (Georges), 1940-
|
Series |
Astronomy and astrophysics library |
|
Astronomy and astrophysics library.
|
Subject |
Astrophysics.
|
|
Nuclear physics.
|
|
Diffusion.
|
|
Cosmology.
|
Alt Name |
Alecian, Georges,
|
|
Richer, Jacques,
|
Description |
1 online resource. |
|
polychrome rdacc |
Bibliography Note |
Includes bibliographical references and index. |
Contents |
Preface -- Observational Motivation and Brief History -- Part I: Physics of Transport Processes -- Atomic Transport: Diffusion Equations -- Radiative Accelerations -- Transport Coefficients -- Diffusion in Magnetic Fields -- Light Induced Drift -- Macroscopic Transport Processes -- Part II: Abundance Anomalies in Stellar Evolution -- Upper Main Sequence Stars of Pop I -- Lower Main Sequence Stars of Pop I -- Population II Dwarfs -- Giants -- Horizontal-Branch Stars -- White Dwarfs -- Neutron Stars -- Part III: Appendices -- Evaluation of Collision Integrals -- Definition of the linlog Function -- List of Astronomical Objects -- References -- Index. |
|
Machine generated contents note: 1. Observational Motivation and Brief History -- 1.1. Abundance Anomalies -- 1.1.1. Sun -- 1.1.2. Lithium Gap -- 1.1.3. AmFm Stars -- 1.1.4. HgMn Stars -- 1.1.5. Magnetic ApBp Stars -- 1.1.6. Pop II Dwarfs -- 1.1.7. Horizontal Branch Stars -- 1.1.8. White Dwarfs -- 1.2. Early History of Atomic Diffusion in Stars -- pt. I Physics of Transport Processes -- 2. Atomic Transport: Diffusion Equations -- 2.1. Simple Approach -- 2.1.1. Time Scale and Gravity -- 2.2. Fundamental Equations -- 2.2.1. System of Equations -- 2.2.2. Dimensionless Form of the Equations -- 2.3. Partial Ionization and Ambipolar Diffusion -- 2.3.1. Ambipolar Diffusion of Hydrogen -- 2.3.2. Ambipolar Diffusion of Trace Elements -- 2.3.3. Averages over States of Ionization -- 3. Radiative Accelerations -- 3.1. Photon Flux and Momentum Exchange -- 3.2. Simple Approach -- 3.3. Basic Equations Without Redistribution of Momentum -- 3.3.1. Detailed Contributions of Atomic Transitions -- 3.3.1.1. Bound-Bound Transitions -- 3.3.1.2. Bound-Free and Free-Free Transitions -- 3.3.2. Approximations for Optically Thick Media -- 3.4. Radiative Accelerations with Redistribution of Momentum -- 3.4.1. Ionization vs Collisions -- 3.4.2. Basic Equations for Redistribution -- 3.4.3. Redistribution Models -- 3.5. Explicit Evaluations -- 3.5.1. Atomic Transition Approach -- 3.5.1.1. Sampling from Atomic Data -- 3.5.2. Opacity Sampling in Stellar Evolution -- 3.5.2.1. Redistribution -- 3.5.2.2. Line Frequency, Density of Opacity Sampling and Uncertainties -- 3.5.3. Interpolation Method -- 3.5.4. Semi-analytic or Parametric Approximation -- 4. Transport Coefficients -- 4.1. Simple Approach -- 4.2. Diffusion Coefficient in a Multicomponent Gas -- 4.3. Contribution of Photons to the Diffusion Coefficient -- 4.4. Atomic Diffusion Coefficients Calculated Using Debye-Huckel Potentials -- 4.4.1. Approximations and Their Effect -- 4.5. Thermal Diffusion -- 4.5.1. Electron Contribution to Thermal Diffusion -- 4.6. Recommended Approximations for a Simple Use of Transport Coefficients -- 4.6.1. Coefficient of Atomic Diffusion -- 4.6.1.1. Approximate Velocities in H-He Mixtures -- 4.6.2. Coefficient for Thermal Diffusion -- 5. Diffusion in Magnetic Fields -- 5.1. Diffusion Velocity -- 5.1.1. Horizontal Magnetic Field -- 5.1.2. Oblique Magnetic Fields -- 5.2. Radiative Accelerations -- 5.2.1. Simple Approach -- 5.2.2. Radiative Accelerations and Polarized Radiative Transfer -- 5.3. Surface Anisotropy of Abundances on Magnetic Stars -- 6. Light Induced Drift -- 6.1. Idealized Case -- 6.2. LID in Stars -- 6.2.1. 3He Time Scale -- 6.2.2. Other Applications -- 7. Macroscopic Transport Processes -- 7.1. Magnetic Fields and Macroscopic Transport -- 7.2. Meridional Circulation -- 7.2.1. Consistent Solution -- 7.2.2. Stabilization by a μ Gradient -- 7.3. Turbulence -- 7.3.1. Modeling Turbulent Transport as Diffusion -- 7.3.2. Effect of Horizontal Homogenization on Meridional Circulation -- 7.3.2.1. Anisotropic Turbulent Transport -- 7.3.3. Simple Parametrization -- 7.3.4. Momentum and Particle Transport Coefficients -- 7.3.4.1. Shellular -- 7.3.4.1.1. Vertical Viscosity -- 7.3.4.1.2. Horizontal Viscosity -- 7.3.4.1.3. Horizontal Shear and Vertical Viscosity -- 7.3.4.1.4. Adjustable Parameters -- 7.3.4.2. Waves -- 7.4. Convection -- 7.4.1. Semi-convection -- 7.4.2. Thermohaline Convection -- 7.5. Mass Loss -- 7.5.1. Solar and Selective Stellar Winds -- 7.5.2. Radiatively Driven Winds -- 7.5.3. Mass Flux and Stellar Mass Reduction -- 7.6. Accretion -- 7.6.1. Accretion of Interstellar Matter -- 7.6.2. Accretion of Orbiting Objects -- pt. II Abundance Anomalies in Stellar Evolution -- 8. Upper Main Sequence Stars of Pop I -- 8.1. Atomic Diffusion in Stellar Atmospheres -- 8.1.1. Element Stratification Process -- 8.1.1.1. Overview of Competing Processes -- 8.1.1.2. Time Dependent Build-Up of Stratifications -- 8.1.1.3. Equilibrium Solutions -- 8.2. Chemically Peculiar Stars with Very Weak or No Magnetic Fields -- 8.2.1. HgMn Stars -- 8.2.1.1. Observational Constraints -- 8.2.1.2. Simple Model for HgMn Stars -- 8.2.1.3. Stratification of Abundances -- 8.2.1.4. More Complex Reality -- 8.3. Chemically Peculiar Stars with Magnetic Fields -- 8.3.1. ApBp Stars -- 8.3.1.1. Observational Constraints -- 8.3.1.2. Observational Properties of Individual Magnetic Stars -- 8.3.1.3. Simple Model with Atomic Diffusion -- 8.3.1.4. More Detailed Theoretical Models -- 8.3.1.5. Pulsations of roAp Stars -- 8.3.2. Stars with Peculiar Helium Abundance -- 8.3.2.1. Helium-Weak, 3He Stars -- 8.3.2.2. Helium-Rich Stars -- 8.3.2.3. Diffusion Mass Loss Model -- 8.4. Stratification in Stellar Interiors -- 8.4.1. Interiors of ApBp Stars -- 8.4.2. β Cephei Stars -- 9. Lower Main Sequence Stars of Pop I -- 9.1. Atomic Diffusion in Stellar Interiors -- 9.1.1. Settling Time Scales on the Main-Sequence -- 9.1.2. Atomic Diffusion in G and F Stars -- 9.1.2.1. Sun -- 9.1.2.2. Stars with M [≤] 1.5 M -- 9.1.2.3. Iron Convection Zones -- 9.2. Evolution: Atomic Diffusion vs Macroscopic Motions -- 9.2.1. Evolution with Mass Loss -- 9.2.2. Evolution with an Extended Surface Mixed Zone -- 9.3. AmFm Stars -- 9.3.1. Observational Constraints -- 9.3.2. Models -- 9.3.2.1. Separation Below the Outer CZ -- 9.3.2.2. Calcium and Scandium -- 9.3.3. Mass Loss or Turbulence -- 9.3.3.1. Further Questions -- 9.3.4. Accretion -- 9.3.4.1. λ Boo Stars -- 9.3.4.2. Planets and the Li Abundance -- 9.4. F and G Stars -- 9.4.1. Lithium Gap -- 9.4.1.1. Error Bars on Radiative Accelerations -- 9.4.2. Solar Type Stars: Helioseismology -- 9.4.2.1. Solar Wind -- 10. Population II Dwarfs -- 10.1. Astrophysical Context -- 10.2. Evolution with Atomic Diffusion -- 10.2.1. Metallicity Dependence -- 10.2.2. Radiative Accelerations -- 10.2.3. Chemical Composition -- 10.3. Comparison to Observations -- 10.3.1. Globular Clusters -- 10.3.2. Lithium in Field Stars -- 10.4. Evolution: Atomic Diffusion vs Macroscopic Motions -- 10.4.1. Turbulence, Settling and Li -- 10.4.1.1. Turbulent Transport vs Settling -- 10.4.2. Meridional Circulation -- 10.4.3. Mass Loss -- 10.5. Age Determination -- 11. Giants -- 11.1. Around the Hook -- 11.2. Mixing on the Giant Branch -- 11.3. He Flash -- 12. Horizontal-Branch Stars -- 12.1. Evolution -- 12.1.1. Settling Time Scales on the HB -- 12.2. Abundances -- 12.2.1. Stratification in Evolutionary Models -- 12.2.2. Stratification in the Atmosphere -- 12.3. Competition Between Atomic Diffusion and Meridional Circulation -- 12.4. Mass Loss -- 12.5. sdBs, sdOs and Pulsations -- 12.5.1. Abundances -- 12.5.2. Pulsations -- 13. White Dwarfs -- 13.1. Formation -- 13.1.1. Cosmochronology -- 13.2. Settling Time Scales and Radiative Accelerations -- 13.2.1. Time Scales and Transport Coefficients -- 13.2.2. Radiative Accelerations -- 13.3. Standard Evolution: DAs vs DBs -- 13.3.1. Diffusion Induced Burning -- 13.4. Abundances and Mass Loss -- 13.5. Accretion -- 13.5.1. Novae -- 13.6. Pulsations -- 14. Neutron Stars -- 14.1. Isolated Neutron Stars -- 14.1.1. Diffusion Equations in Degenerate Matter -- 14.1.1.1. Driving Terms -- 14.1.1.2. Time Scales and Diffusion Coefficients -- 14.1.2. Diffusion Induced Burning -- 14.2. Accretion and Diffusion in Binary Systems -- 14.2.1. Radiative Accelerations and Fe Abundance -- 15. Conclusion -- A. Evaluation of Collision Integrals -- A.1. Screened Coulomb Interactions -- A.2. Interactions Involving Neutral Particles -- B. Definition of the linlog Function. |
Summary |
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importance of atomic diffusion in a given star. |
Note |
Vendor-supplied metadata. |
ISBN |
9783319198545 (electronic bk.) |
|
3319198548 (electronic bk.) |
|
331919853X (print) |
|
9783319198538 (print) |
ISBN/ISSN |
10.1007/978-3-319-19854-5 |
OCLC # |
927140524 |
Additional Format |
Printed edition: 9783319198538 |
|