Return to home page
Searching: Muskingum library catalog
We are currently experiencing delivery delays for items requested from other institutions while transitioning to a new statewide delivery service. Please contact your library with questions or advice about alternative resources. Thank you for your patience!
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Conference Brazilian Meeting on Bayesian Statistics (12th : 2014 : Atibaia, Brazil)
Title Interdisciplinary bayesian statistics : EBEB 2014 / edited by Adriano Polpo, Francisco Louzada, Laura L.R. Rifo, Julio M. Stern, Marcelo Lauretto.
Imprint Cham : Springer, 2015.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Conference Brazilian Meeting on Bayesian Statistics (12th : 2014 : Atibaia, Brazil)
Series Springer Proceedings in Mathematics & Statistics, 2194-1009 ; volume 118
Springer proceedings in mathematics & statistics ; v. 118.
Subject Bayesian statistical decision theory -- Congresses.
Alt Name Polpo, Adriano,
Rifo, Laura L. R.,
Louzada, Francisco,
Stern, Julio Michael,
Lauretto, Marcelo de Souza,
Add Title EBEB 2014
Description 1 online resource (xviii, 366 pages) : illustrations (some color).
Summary Through refereed papers, this volume focuses on the foundations of the Bayesian paradigm; their comparison to objectivistic or frequentist Statistics counterparts; and the appropriate application of Bayesian foundations. This research in Bayesian Statistics is applicable to data analysis in biostatistics, clinical trials, law, engineering, and the social sciences. EBEB, the Brazilian Meeting on Bayesian Statistics, is held every two years by the ISBrA, the International Society for Bayesian Analysis, one of the most active chapters of the ISBA. The 12th meeting took place March 10-14, 2014 in Atibaia. Interest in foundations of inductive Statistics has grown recently in accordance with the increasing availability of Bayesian methodological alternatives. Scientists need to deal with the ever more difficult choice of the optimal method to apply to their problem. This volume shows how Bayes can be the answer. The examination and discussion on the foundations work towards the goal of proper application of Bayesian methods by the scientific community. Individual papers range in focus from posterior distributions for non-dominated models, to combining optimization and randomization approaches for the design of clinical trials, and classification of archaeological fragments with Bayesian networks.
Contents What About the Posterior Distributions When the Model is Non-dominated -- Bayesian Learning of Material Density Function by Multiple Sequential Inversions of 2-D Images in Electron Microscopy -- Problems with Constructing Tests to Accept the Null Hypothesis -- Cognitive-Constructivism, Quine, Dogmas of Empiricism, and Munchhausen's Trilemma -- A maximum entropy approach to learn Bayesian networks from incomplete data -- Bayesian Inference in Cumulative Distribution Fields -- MCMC-Driven Adaptive Multiple Importance Sampling -- Bayes Factors for comparison of restricted simple linear regression coefficients -- A Spanning Tree Hierarchical Model for Land Cover Classification -- Nonparametric Bayesian regression under combinations of local shape constraints -- A Bayesian Approach to Predicting Football Match Outcomes Considering Time Effect Weight -- Homogeneity tests for 22 contingency tables -- Combining Optimization and Randomization Approaches for the Design of Clinical Trials -- Factor analysis with mixture modeling to evaluate coherent patterns in microarray data.
Bibliography Note Includes bibliographical references at the end of each chapters.
Note Online resource; title from PDF title page (SpringerLink, viewed March 4, 2015).
ISBN 9783319124544 (electronic bk.)
3319124544 (electronic bk.)
3319124536 (print)
9783319124537 (print)
9783319124537
ISBN/ISSN 10.1007/978-3-319-12454-4
OCLC # 904131855
Additional Format Printed edition: 9783319124537



If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team