Return to home page
Searching: Muskingum library catalog
We are currently experiencing delivery delays for items requested from other institutions while transitioning to a new statewide delivery service. Please contact your library with questions or advice about alternative resources. Thank you for your patience!

LEADER 00000cam  2200613 a 4500 
001    747105249 
003    OCoLC 
005    20210319101128.6 
006    m     o  d         
007    cr cn||||||||| 
008    110818s2011    gw      ob    001 0 eng d 
019    759865038|a1112546236 
020    9783642191992|q(electronic bk.) 
020    3642191991|q(electronic bk.) 
020    3642191983 
020    9783642191985 
020    |z9783642191985 
024 7  10.1007/978-3-642-19199-2.|2doi 
035    (OCoLC)747105249|z(OCoLC)759865038|z(OCoLC)1112546236 
037    978-3-642-19198-5|bSpringer|n 
040    GW5XE|beng|epn|erda|cGW5XE|dOCLCQ|dE7B|dEBLCP|dOCLCQ
049    MAIN 
050  4 QC174.12|b.B68 2011 
072  7 PHU.|2bicssc 
072  7 SCI040000.|2bisacsh 
082 04 530.12|223 
100 1  Boudet, Roger.|0
245 10 Quantum mechanics in the geometry of space-time :
       |belementary theory /|cRoger Boudet. 
264  1 Heidelberg ;|aNew York :|bSpringer,|c2011. 
300    1 online resource (xii, 130 pages). 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
340    |gpolychrome|2rdacc|0
347    text file 
347    |bPDF 
490 1  SpringerBriefs in Physics 
504    Includes bibliographical references and index. 
505 0  pt. 1. The real geometrical algebra, or, Space-time 
       algebra : comparison with the language of the complex 
       matrices and spinors -- pt. 2. The U(1) gauge in complex 
       and real languages, geometrical properties and relation 
       with the spin and the energy of a particle of spin 1/2 -- 
       pt. 3. Geometrical properties of the Dirac theory of the 
       electron -- pt. 4. The SU(2) gauge and the Yang-Mills 
       theory in complex and real languages -- pt. 5. The SU(2) x
       U(1) gauge in complex and real languages -- pt. 6. The 
       Glashow-Salam-Weinberg electroweak theory -- pt. 7. On a 
       change of SU(3) into three SU(2) x U(1) -- pt. 8. Addendum
       -- pt. 9. Appendices. 
520    This book continues the fundamental work of Arnold 
       Sommerfeld and David Hestenes formulating theoretical 
       physics in terms of Minkowski space-time geometry. We see 
       how the standard matrix version of the Dirac equation can 
       be reformulated in terms of a real space-time algebra, 
       thus revealing a geometric meaning for the "number i" in 
       quantum mechanics. Next, it is examined in some detail how
       electroweak theory can be integrated into the Dirac theory
       and this way interpreted in terms of space-time geometry. 
       Finally, some implications for quantum electrodynamics are
       considered. The presentation of real quantum 
       electromagnetism is expressed in an addendum. The book 
       covers both the use of the complex and the real languages 
       and allows the reader acquainted with the first language 
       to make a step by step translation to the second one 
650  0 Quantum theory.|0
650  0 Space and time.|0
776 08 |iPrint version:|aBoudet, Roger.|tQuantum mechanics in the
       geometry of space-time.|dHeidelberg ; New York : Springer,
       2011|w(DLC)  2013444041 
830  0 SpringerBriefs in physics.|0
990    SpringerLink|bSpringer English/International eBooks 2011 -
       Full Set|c2021-03-19|yMaster record encoding level change
990    SpringerLink|bSpringer English/International eBooks 2011 -
       Full Set|c2018-10-31|yNew collection 
View online

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team