Return to home page
Searching: Muskingum library catalog
We are currently experiencing delivery delays for items requested from other institutions while transitioning to a new statewide delivery service. Please contact your library with questions or advice about alternative resources. Thank you for your patience!

LEADER 00000cam  2200637Ii 4500 
001    262681828 
003    OCoLC 
005    20181101051443.1 
006    m     o  d         
007    cr cn||||||||| 
008    081017s2006    gw a    ob    100 0 eng d 
019    62759090|a228158897|a228158898|a288214289|a608089058
020    9783540324546 
020    3540324542 
020    9783540285861|q(hardcover ;|qalk. paper) 
020    3540285865|q(hardcover ;|qalk. paper) 
024 7  10.1007/b11545989|2doi 
035    (OCoLC)262681828|z(OCoLC)62759090|z(OCoLC)228158897
037    978-3-540-28586-1|bSpringer|n 
040    GW5XE|beng|epn|erda|cGW5XE|dSPLNM|dCEF|dOCLCQ|dNUI|dCOO
049    MAIN 
050  4 QA913|b.M385 2006eb 
072  7 MAT007000|2bisacsh 
072  7 PBKJ|2bicssc 
082 04 532/.58|222 
245 00 Mathematical foundation of turbulent viscous flows :
       |blectures given at the C.I.M.E. summer school held in 
       Martina Franca, Italy, September 1-5, 2003 /|cP. 
       Constantin [and others], editors M. Cannone, T. Miyakawa. 
264  1 Berlin ;|aNew York :|bSpringer,|c2006. 
300    1 online resource (ix, 252 pages) :|billustrations. 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
340    |gpolychrome|2rdacc|0
347    text file|2rdaft|0
490 1  Lecture notes in mathematics,|x0075-8434 ;|v1871 
504    Includes bibliographical references. 
505 0  Euler equations, Navier-Stokes equations and turbulence / 
       Peter Constantin -- CKN theory of singularities of weak 
       solutions of the Navier-Stokes equations / Giovanni 
       Gallavotti -- Approximation of weak limits and related 
       problems / Alexandre V. Kazhikhov -- Oscillating patterns 
       in some nonlinear evolution equations / Yves Meyer -- 
       Asymptotic analysis of fluid equations / Seiji Ukai. 
520 8  Annotation|bFive well-known mathematicians reflect on 
       different and complementary approaches to fundamental 
       questions in the study of the Fluid Mechanics and Gas 
       Dynamics equations. Constantin presents the Euler 
       equations of ideal incompressible fluids and discusses the
       blow-up problem for the Navier-Stokes equations of viscous
       fluids, describing some of the major mathematical 
       questions of turbulence theory. These questions are 
       connected to the Caffarelli-Kohn-Nirenberg theory of 
       singularities for the incompressible Navier-Stokes 
       equations, that is explained in Gallavotti's lectures. 
       Kazikhov introduces the theory of strong approximation of 
       weak limits via the method of averaging, applied to Navier
       -Stokes equations. Y. Meyer focuses on several nonlinear 
       evolution equations - in particular Navier-Stokes - and 
       some related unexpected cancellation properties, either 
       imposed on the initial condition, or satisfied by the 
       solution itself, whenever it is localized in space or in 
       time variable. Ukai presents the asymptotic analysis 
       theory of fluid equations. He discusses the Cauchy-
       Kovalevskaya technique for the Boltzmann-Grad limit of the
       Newtonian equation, the multi-scale analysis, giving the 
       compressible and incompressible limits of the Boltzmann 
       equation, and the analysis of their initial layers. 
588 0  Print version record. 
650  0 Turbulence|xMathematical models|vCongresses.|0http:// 
650  0 Viscous flow|0
650  0 Navier-Stokes equations|0
655  4 Electronic books. 
655  7 Conference papers and proceedings.|2fast|0http:// 
655  7 Conference papers and proceedings.|2lcgft|0http:// 
700 1  Constantin, P.|q(Peter),|d1951-|0
700 1  Cannone, M.|q(Marco)|0
700 1  Miyakawa, T.|q(Tetsuro)|0
710 2  Centro internazionale matematico estivo.|0http:// 
773 0  |tSpringer e-books 
776 08 |iPrint version:|tMathematical foundation of turbulent 
       viscous flows.|dBerlin ; New York : Springer, 2006
       |z3540285865|w(DLC)  2005936391|w(OCoLC)63177840 
830  0 Lecture notes in mathematics (Springer-Verlag) ;|0http://|v1871. 
990    SpringerLink|bSpringer English/International eBooks 2006 -
       Full Set|c2018-10-31|yNew collection 
View online

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team