Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
Author Yates, Roy D.,
Title Probability and stochastic processes : a friendly introduction for electrical and computer engineers / Roy D. Yates, Rutgers, the State University of New Jersey, David J. Goodman, New York University.
Imprint Hoboken, NJ : John Wiley & Sons, Inc., [2014]
Edition Third edition.

View online
View online
Author Yates, Roy D.,
Subject Probabilities.
Stochastic processes.
Alt Name Goodman, David J., 1939-
Description 1 online resource (xvi, 496 pages)
Edition Third edition.
Bibliography Note Includes bibliographical references and index.
Note Machine generated contents note: Chapter 1. Experiments, Models, and Probabilities Chapter 2. Discrete Random Variables Chapter 3. Continuous Random Variables Chapter 4. Pairs of Random Variables Chapter 5. Random Vectors Chapter 6. Sums of Random Variables Chapter 7. Parameter Estimation Using the Sample Mean Chapter 8. Hypothesis Testing Chapter 9. Estimation of a Random Variable Chapter 10. Stochastic Processes Chapter 11. Random Signal Processing Chapter 12. Markov Chains.
Contents Cover; Title Page; Copyright; Features of this Text; Who will benefit from using this text?; What's New?; Notable Features; Instructor Support; Preface; Welcome to the third edition; How the book is organized; What is distinctive about this book?; Further Reading; Acknowledgments; A Message to Students from the Authors; Contents; Chapter 1: Experiments, Models, and Probabilities; Getting Started with Probability; 1.1 Set Theory; 1.2 Applying Set Theory to Probability; 1.3 Probability Axioms; 1.4 Conditional Probability; 1.5 Partitions and the Law of Total Probability; 1.6 Independence.
1.7 MatlabProblems; Chapter 2: Sequential Experiments; 2.1 Tree Diagrams; 2.2 Counting Methods; 2.3 Independent Trials; 2.4 Reliability Analysis; 2.5 Matlab; Problems; Chapter 3: Discrete Random Variables; 3.1 Definitions; 3.2 Probability Mass Function; 3.3 Families of Discrete Random Variables; 3.4 Cumulative Distribution Function (CDF); 3.5 Averages and Expected Value; 3.6 Functions of a Random Variable; 3.7 Expected Value of a Derived Random Variable; 3.8 Variance and Standard Deviation; 3.9 Matlab; Problems; Chapter 4: Continuous Random Variables; 4.1 Continuous Sample Space.
4.2 The Cumulative Distribution Function4.3 Probability Density Function; 4.4 Expected Values; 4.5 Families of Continuous Random Variables; 4.6 Gaussian Random Variables; 4.7 Delta Functions, Mixed Random Variables; 4.8 Matlab; Problems; Chapter 5: Multiple Random Variables; 5.1 Joint Cumulative Distribution Function; 5.2 Joint Probability Mass Function; 5.3 Marginal PMF; 5.4 Joint Probability Density Function; 5.5 Marginal PDF; 5.6 Independent Random Variables; 5.7 Expected Value of a Function of Two Random Variables; 5.8 Covariance, Correlation and Independence.
5.9 Bivariate Gaussian Random Variables5.10 Multivariate Probability Models; 5.11 Matlab; Problems; Chapter 6: Probability Models of Derived Random Variables; 6.1 PMF of a Function of Two Discrete Random Variables; 6.2 Functions Yielding Continuous Random Variables; 6.3 Functions Yielding Discrete or Mixed Random Variables; 6.4 Continuous Functions of Two Continuous Random Variables; 6.5 PDF of the Sum of Two Random Variables; 6.6 Matlab; Problems; Chapter 7: Conditional Probability Models; 7.1 Conditioning a Random Variable by an Event; 7.2 Conditional Expected Value Given an Event.
7.3 Conditioning Two Random Variables by an Event7.4 Conditioning by a Random Variable; 7.5 Conditional Expected Value Given a Random Variable; 7.6 Bivariate Gaussian Random Variables: Conditional PDFs; 7.7 Matlab; Problems; Chapter 8: Random Vectors; 8.1 Vector Notation; 8.2 Independent Random Variables and Random Vectors; 8.3 Functions of Random Vectors; 8.4 Expected Value Vector and Correlation Matrix; 8.5 Gaussian Random Vectors; 8.6 Matlab; Problems; Chapter 9: Sums of Random Variables; 9.1 Expected Values of Sums; 9.2 Moment Generating Functions.
Summary "In Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, readers are able to grasp the concepts of probability and stochastic processes, and apply these in professional engineering practice. The 3rd edition also includes quiz solutions within the appendix of the text. The resource presents concepts clearly as a sequence of building blocks identified as an axiom, definition or theorem. This approach allows for a better understanding of the material, which can be utilized in solving practical problems"-- Provided by publisher.
Note Description based on online resource; title from digital title page (viewed on January 14, 2019).
ISBN 9781118804384 electronic book
1118804384 electronic book
9781118324561 paperback
1118324560 paperback
OCLC # 864753147
Additional Format Print version: Yates, Roy D. Probability and stochastic processes. Third edition. Hoboken, NJ : John Wiley & Sons, [2014] 9781118324561 (DLC) 2013047063

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team