Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Conference ISC High Performance (Conference) (35th : 2020 : Online)
Title High performance computing : 35th International Conference, ISC High Performance 2020, Frankfurt/Main, Germany, June 22-25, 2020, proceedings / Ponnuswamy Sadayappan, Bradford L. Chamberlain, Guido Juckeland, Hatem Ltaief (Eds.).
Imprint Cham : Springer, 2020.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Conference ISC High Performance (Conference) (35th : 2020 : Online)
Series Lecture Notes in Computer Science ; 12151.
LNCS Sublibrary: SL1, Theoretical Computer Science and General Issues.
Lecture notes in computer science ; 12151.
LNCS sublibrary. SL 1, Theoretical computer science and general issues.
Subject High performance computing -- Congresses.
Supercomputers -- Congresses.
Alt Name Sadayappan, P.
Chamberlain, Bradford L. (Computer scientist)
Juckeland, Guido.
Ltaief, Hatem.
Description 1 online resource (563 pages).
Note International conference proceedings.
Description based upon print version of record.
"A record-setting attendance was anticipated for ISC-HPC 2020 in Frankfurt, but as with all other conferences in summer 2020, theglobal coronavirus pandemic forced it to be a digital event."
5.2 Comparison with the Offline IBmodel
Includes author index.
Contents Intro -- Preface -- Organization -- Contents -- Architectures, Networks and Infrastructure -- FASTHash: FPGA-Based High Throughput Parallel Hash Table -- 1 Introduction -- 2 Related Work -- 2.1 Hash Table Implementation on CPU and GPU -- 2.2 Hash Table Implementation on FPGA -- 2.3 Novelty of Our Work -- 3 Hash Table Overview -- 3.1 Definition of Hash Table -- 3.2 Parallel Hash Table -- 4 FASTHash: An FPGA-Based Parallel Hash Table -- 4.1 Hash Table Data Organization -- 4.2 Hash Table Architecture -- 4.3 Customization for Static Hash Table -- 5 Hash Table Guarantees and Applications Supported
5.1 Implications of Relaxed Eventual Consistency -- 5.2 Applications Supported -- 6 Experiments and Results -- 6.1 Experimental Methodology -- 6.2 Results -- 6.3 Comparison with State-of-the-Art (SOTA) Designs -- 7 Conclusion -- References -- Running a Pre-exascale, Geographically Distributed, Multi-cloud Scientific Simulation -- 1 Introduction -- 1.1 Related Work -- 2 The Workload Management System Setup -- 2.1 The Multi-cloud, Geographically Distributed HTCondor Setup -- 2.2 Dealing with Data Handling -- 2.3 Unexpected Problems Encountered in the HTCondor Setup
3 The Multi-cloud, Multi-region Setup -- 3.1 The Social Hurdle -- 3.2 Provisioning the 51k GPUs Over 3 Cloud Providers Using Multiple Regions -- 3.3 An Overview of the Provisioned Resources -- 3.4 Preparations -- 3.5 Cloud Cost Analysis -- 4 The IceCube Science Proposition -- 4.1 The IceCube Neutrino Observatory -- 4.2 The Importance of Proper Calibration -- 4.3 Using GPUs for Photon Propagation Simulation -- 4.4 The Science Output -- 5 Conclusions -- References -- Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation Hardware Design and Evaluation
1 Introduction -- 2 Previous Work -- 3 Streaming-Aggregation -- 3.1 Tree Type -- 3.2 InfiniBand Transport Selection -- 3.3 Tree Locking -- 3.4 Reduction Tree -- 3.5 Reduction Pipelining -- 3.6 Switch-Level Reduction -- 3.7 Result Distribution -- 3.8 Aggregation Protocol Resilience -- 4 Experiments -- 4.1 Test System Configuration -- 4.2 Synthetic Benchmarks -- 4.3 Application Benchmarks -- 5 Summary -- References -- Artificial Intelligence and Machine Learning -- Predicting Job Power Consumption Based on RJMS Submission Data in HPC Systems -- 1 Introduction -- 1.1 Constraints for Job Scheduling
1.2 Related Work -- 1.3 Contributions -- 2 Extracted Data and Preprocessing -- 2.1 The COBALT Supercomputer and The SLURM RJMS -- 2.2 From Raw Data to Relevant Features -- 2.3 Target and Problem Formalization -- 3 Instance Based Regression Model -- 3.1 Inputs as Categorical Data -- 3.2 An Input-Conditioning Model -- 3.3 Variable Selection -- 4 Global Consumption Practical Estimation -- 4.1 Weighted Estimator for Global Power Estimation -- 4.2 Online Computations -- 4.3 Exponential Smoothing for Weighted and Streamed Update -- 5 Numerical Results and Discussion -- 5.1 Offline Instance-Based Model
ISBN 9783030507435 (electronic bk.)
3030507432 (electronic bk.)
9783030507428 (print)
OCLC # 1159167322
Additional Format Print version: Sadayappan, Ponnuswamy High Performance Computing : 35th International Conference, ISC High Performance 2020, Frankfurt/Main, Germany, June 22-25, 2020, Proceedings Cham : Springer International Publishing AG,c2020 9783030507428.


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team