Series |
Wiley series in renewable resources. |
|
Wiley series in renewable resources.
|
Subject |
Biopolymers.
|
|
Plastics.
|
Alt Name |
Kabasci, Stephan.
|
Description |
1 online resource. |
Bibliography Note |
Includes bibliographical references and index. |
Contents |
Machine generated contents note: 1. Bio-Based Plastics -- Introduction / Stephan Kabasci -- 1.1. Definition of Bio-Based Plastics -- 1.2. A Brief History of Bio-Based Plastics -- 1.3. Market for Bio-Based Plastics -- 1.4. Scope of the Book -- 2. Starch / Sebastia Gesti Garcia -- 2.1. Introduction -- 2.2. Starch -- 2.3. Starch-Filled Plastics -- 2.4. Structural Starch Modifications -- 2.4.1. Starch Gelatinization and Retrogradation -- 2.4.2. Starch Jet-Cooking -- 2.4.3. Starch Extrusion Cooking -- 2.4.4. Starch Destructurization in Absence of Synthetic Polymers -- 2.4.5. Starch Destructurization in Presence of Synthetic Polymers -- 2.4.6. Additional Information on Starch Complexation -- 2.5. Starch-Based Materials on the Market -- 2.6. Conclusions -- References -- 3. Cellulose and Cellulose Acetate / Hans-Peter Fink -- 3.1. Introduction -- 3.2. Raw Materials -- 3.3. Structure -- 3.3.1. Cellulose -- 3.3.2. Cellulose Derivatives -- 3.4. Principles of Cellulose Technology 3.4.1. Regenerated Cellulose -- 3.4.2. Organic Cellulose Esters -- Cellulose Acetate -- 3.5. Properties and Applications of Cellulose-Based Plastics -- 3.5.1. Fibres -- 3.5.2. Films -- 3.5.3. Moulded Articles -- 3.6. Some Recent Developments -- 3.6.1. Cellulose -- 3.6.2. Cellulose Acetate and Mixed Esters -- 3.7. Conclusion -- References -- 4. Materials Based on Chitin and Chitosan / Marguerite Rinaudo -- 4.1. Introduction -- 4.2. Preparation and Characterization of Chitin and Chitosan -- 4.2.1. Chitin: Characteristics and Characterization -- 4.2.2. Chitosan: Preparation and Characterization -- 4.3. Processing of Chitin to Materials and Applications -- 4.3.1. Processing of Chitin and Physical Properties of Materials -- 4.3.2. Applications of Chitin-Based Materials -- 4.4. Chitosan Processing to Materials and Applications -- 4.4.1. Processing of Chitosan -- 4.4.2. Application of Chitosan-Based Materials -- 4.5. Conclusion -- References -- 5. Lignin Matrix Composites from Natural Resources -- ARBOFORM® / Norbert Eisenreich 5.1. Introduction -- 5.2. Approaches for Plastics Completely Made from Natural Resources -- 5.3. Formulation of Lignin Matrix Composites (ARBOFORM) -- 5.3.1. Lignin -- 5.3.2. Basic Formulations and Processing of ARBOFORM -- 5.3.3. The Influence of the Fibre Content -- 5.4. Chemical Free Lignin from High Pressure Thermo-Hydrolysis (Aquasolv) -- 5.4.1. Near Infrared Spectroscopy of Lignin Types -- 5.4.2. Lignin Extraction by High-Pressure Hydrothermolysis (HPH) -- 5.4.3. Thermoplastic Processing of Aquasolv Lignin -- 5.5. Functionalizing Lignin Matrix Composites -- 5.5.1. Impact Strength -- 5.5.2. Flame Retardancy -- 5.5.3. Electrical Conductivity with Nanoparticles -- 5.5.4. Pyrolysis to Porous Carbonaceous Structures -- 5.6. Injection Moulding of Parts -- Case Studies -- 5.6.1. Loudspeaker Boxes -- 5.6.2. Precision Parts -- 5.6.3. Thin Walled and Decorative Gift Boxes and Toys -- Acknowledgements -- References -- 6. Bioplastics from Lipids / Stuart Coles -- 6.1. Introduction -- 6.2. Definition and Structure of Lipids 6.2.1. Fatty Acids -- 6.2.2. Mono-, Di- and Tri-Substituted Glycerols -- 6.2.3. Phospholipids -- 6.2.4. Other Compounds -- 6.3. Sources and Biosynthesis of Lipids -- 6.3.1. Sources of Lipids -- 6.3.2. Biosynthesis of Lipids -- 6.3.3. Composition of Triglycerides -- 6.4. Extraction of Plant Oils, Triglycerides and Their Associated Compounds -- 6.4.1. Seed Cleaning and Preparation -- 6.4.2. Seed Pressing -- 6.4.3. Liquid Extraction -- 6.4.4. Post Extraction Processing -- 6.5. Biopolymers from Plant Oils, Triglycerides and Their Associated Compounds -- 6.5.1. Generic Triglycerides -- 6.5.2. Common Manipulations of Triglycerides -- 6.5.3. Soybean Oil-Based Bioplastics -- 6.5.4. Castor Oil-Based Bioplastics -- 6.5.5. Linseed Oil-Based Bioplastics -- 6.5.6. Other Plant Oil-Based Bioplastics -- 6.5.7. Biological Synthesis of Polymers -- 6.6. Applications -- 6.6.1. Mimicking to Reduce R&D Risk -- 6.6.2. Composites -- 6.6.3. Coatings -- 6.6.4. Packaging Materials -- 6.6.5. Foams -- 6.6.6. Biomedical Applications -- 6.6.7. Other Applications 6.7. Conclusions -- References -- 7. Polyhydroxyalkanoates: Basics, Production and Applications of Microbial Biopolyesters / Gerhart Braunegg -- 7.1. Microbial PHA Production, Metabolism, and Structure -- 7.1.1. Occurrence of PHAs -- 7.1.2. In Vivo Characteristics and Biological Role of PHAs -- 7.1.3. Structure and Composition of PHAs -- 7.1.4. Metabolic Aspects -- 7.2. Available Raw Materials for PHA Production -- 7.3. Recovery of PHA from Biomass -- 7.3.1. General Aspects of PHA Recovery -- 7.3.2. Direct Extraction of PHA from Biomass -- 7.3.3. Digestion of the non-PHA Cellular Material -- 7.3.4. Disruption of Cells of Osmophilic Microbes in Hypotonic Medium -- 7.4. Different Types of PHA -- 7.4.1. Short Chain Length vs. Medium Chain Length PHAs -- 7.4.2. Enzymatic Background: PHA Synthases -- 7.5. Global PHA Production -- 7.6. Applications of PHAs -- 7.6.1. General -- 7.6.2. Packaging and Commodity Items -- 7.6.3. Medical Applications -- 7.6.4. Application of the Monomeric Building Blocks -- 7.6.5. Smart Materials -- 7.6.6. Controlled Release of Active Agents |
|
7.7. Economic Challenges in the Production of PHAs and Attempts to Overcome Them -- 7.7.1. PHA Production as a Holistic Process -- 7.7.2. Substrates as Economic Factor -- 7.7.3. Downstream Processing -- 7.7.4. Process Design -- 7.7.5. Contemporary Attempts to Enhance PHA Production in Terms of Economics and Product Quality -- 7.8. Process Design -- 7.9. Conclusion -- References -- 8. Poly(Lactic Acid) / Hideto Tsuji -- 8.1. Introduction -- 8.2. Historical Outline -- 8.3. Synthesis of Monomer -- 8.4. Synthesis of Poly(Lactic Acid) -- 8.4.1. Homopolymers -- 8.4.2. Linear Copolymers -- 8.5. Processing -- 8.6. Crystallization -- 8.6.1. Crystal Structures -- 8.6.2. Crystalline Morphology -- 8.6.3. Crystallization Behaviour -- 8.7. Physical Properties -- 8.7.1. Mechanical Properties -- 8.7.2. Thermal Properties -- 8.7.3. Permeability -- 8.7.4. Surface Properties -- 8.7.5. Electrical Properties -- 8.7.6. Optical Properties -- 8.8. Hydrolytic Degradation -- 8.8.1. Degradation Mechanism -- 8.8.2. Effects of Surrounding Media -- 8.8.3. Effects of Material Parameters 8.9. Thermal Degradation -- 8.10. Biodegradation -- 8.11. Photodegradation -- 8.12. High-Performance Poly(Lactic Acid)-Based Materials -- 8.12.1. Nucleating or Crystallization-Accelerating Fillers -- 8.12.2. Composites and Nanocomposites -- 8.12.3. Fibre-Reinforced Plastics (FRPs) -- 8.12.4. Stereocomplexation -- 8.13. Applications -- 8.13.1. Alternatives to Petro-Based Polymers -- 8.13.2. Biomedical -- 8.13.3. Environmental Applications -- 8.14. Recycling -- 8.15. Conclusions -- References -- 9. Other Polyesters from Biomass Derived Monomers / Jacco van Haveren -- 9.1. Introduction -- 9.2. Isohexide Polyesters -- 9.2.1. Introduction -- 9.2.2. Semi-Aromatic Homo-Polyesters -- 9.2.3. Semi-Aromatic Co-Polyesters -- 9.2.4. Aliphatic Polyesters -- 9.2.5. Modified Isohexides -- 9.3. Furan-Based Polyesters -- 9.3.1. Introduction -- 9.3.2. 2,5-Dihydroxymethylfuran (DHMF)-Based Polyesters -- 9.3.3. 5-Hydroxymethylfuroic Acid (HMFA) Based Polyesters -- 9.3.4. Furan-2,5-Dicarboxylic Acid (FDCA) Based Polyesters -- 9.3.5. Future Outlook -- 9.4. Poly(Butylene Succinate) (PBS) and Its Copolymers 9.4.1. Succinic Acid -- 9.4.2. 1,4-Butanediol (BDO) -- 9.4.3. Poly(Butylene Succinate) (PBS) -- 9.4.4. PBS Copolymers -- 9.4.5. PBS Biodegradability -- 9.4.6. PBS Processability -- 9.4.7. PBS Blends -- 9.4.8. PBS Markets and Applications -- 9.4.9. Future Outlook -- 9.5. Bio-Based Terephthalates -- 9.5.1. Introduction -- 9.5.2. Bio-Based Diols: Ethylene Glycol, 1,3-Propanediol, 1,4-Butanediol -- 9.5.3. Bio-Based Xylenes, Isophthalic and Terephthalic Acid -- 9.6. Conclusions -- References -- 10. Polyamides from Biomass Derived Monomers / Benjamin Brehmer -- 10.1. Introduction -- 10.1.1. What are Polyamides? -- 10.1.2. What is the Polymer Pyramid? -- 10.1.3. Where do Polyamides from Biomass Derived Monomers Fit? -- 10.2. Technical Performance of Polyamides -- 10.2.1. How to Differentiate Performance -- 10.2.2. Overview of Current Applications -- 10.2.3. Typical Association of Biopolymers -- 10.3. Chemical Synthesis -- 10.3.1. Castor Bean to Intermediates -- 10.3.2. Undecenoic Acid Route -- 10.3.3. Sebacic Acid Route -- 10.3.4. Decamethylene Diamine Route 10.4. Monomer Feedstock Supply Chain -- 10.4.1. Description of Supply Chain -- 10.4.2. Pricing Situation -- 10.5. Producers -- 10.6. Sustainability Aspects -- 10.6.1. Biosourcing -- 10.6.2. Lifecycle Assessments -- 10.6.3. Labelling and Certification -- 10.7. Improvement and Outlook -- References -- 11. Polyolefin-Based Plastics from Biomass-Derived Monomers / R.J. Koopmans -- 11.1. Introduction -- 11.2. Polyolefin-Based Plastics -- 11.3. Biomass -- 11.4. Chemicals from Biomass -- 11.5. Chemicals from Biotechnology -- 11.6. Plastics from Biomass -- 11.7. Polyolefin Plastics from Biomass and Petrochemical Technology -- 11.7.1. One-Carbon Building Blocks -- 11.7.2. Two-Carbon Building Blocks -- 11.7.3. Three-Carbon Building Blocks -- 11.8. Polyolefin Plastics from Biomass and BiotechnologyNote continued: 11.9. Bio-Polyethylene and Bio-Polypropylene -- 11.10. Perspective and Outlook -- References -- 12. Future Trends for Recombinant Protein-Based Polymers: The Case Study of Development and Application of Silk-Elastin-Like Polymers / Raul Machado -- 12.1. Introduction -- 12.2. Production of Recombinant Protein-Based Polymers (rPBPs) -- 12.3. The Silk-Elastin-Like Polymers (SELPs) -- 12.3.1. SELPs for Biomedical Applications: Hydrogels for Localized Delivery -- 12.3.2. Mechanical Properties of SELP Hydrogels -- 12.3.3. Spun Fibres -- 12.3.4. Solvent Cast Films -- 12.4. Final Considerations -- References -- 13. Renewable Raw Materials and Feedstock for Bioplastics / Stephan Piotrowski -- 13.1. Introduction -- 13.2. First- and Second-Generation Crops: Advantages and Disadvantages 13.3. The Amount of Land Needed to Grow Feedstock for Bio-Based Plastics -- 13.4. Productivity and Availability of Arable Land -- 13.5. Research on Feedstock Optimization -- 13.6. Advanced Breeding Technologies and Green Biotechnology -- 13.7. Some Facts about Food Prices and Recent Food Price Increases -- 13.8. Is there Enough Land for Food, Animal Feed, Bioenergy and Industrial Material Use, Including Bio-Based Plastics? -- References -- 14. The Promise of Bioplastics -- Bio-Based and Biodegradable-Compostable Plastics / Ramani Narayan -- 14.1. Value Proposition for Bio-Based Plastics -- 14.2. Exemplars of Zero or Reduced Material Carbon Footprint -- Bio-PE, Bio-PET and PLA -- 14.3. Process Carbon Footprint and LCA -- 14.4. Determination of Bio-Based Carbon Content -- 14.5. End-of-Life Options for Bioplastics -- Biodegradability-Compostability -- 14.6. Summary -- References. |
Note |
Description based on print version record and CIP data provided by publisher. |
ISBN |
9781118676738 (ePub) |
|
1118676734 (ePub) |
|
9781118676783 (Adobe PDF) |
|
1118676785 (Adobe PDF) |
|
9781119994008 (cloth) |
|
9781118676646 |
|
1118676645 |
|
1119994004 (cloth) |
|
9781119994008 (cloth) |
OCLC # |
852958602 |
Additional Format |
Print version: Bio-based plastics Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014 9781119994008 (DLC) 2013026528 |
|