Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Author Kunusch, Cristian.
Title Sliding-mode control of PEM fuel cells / Cristian Kunusch, Paul Puleston, Miguel Mayosky.
Imprint London ; New York : Springer, 2012.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Author Kunusch, Cristian.
Series Advances in industrial control, 1430-9491
Advances in industrial control.
Subject Proton exchange membrane fuel cells -- Automatic control.
Alt Name Puleston, Paul.
Mayosky, Miguel.
Description 1 online resource (xx, 177 pages) : illustrations.
polychrome rdacc
Bibliography Note Includes bibliographical references and index.
Contents Introducing Fuel Cells -- Basics of PEM Fuel Cells -- Fundamentals of Sliding Mode Control Design -- Assessment of SOSM Techniques Applied to Fuel Cell Control -- Control-oriented Modelling and Experimental Validation of a PEMFC Generation System -- SOSM Controller for the PEMFC Generation System: Design and Implementation -- Closing Remarks.
Summary Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today's energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation principles, the mathematical background of high-order sliding-mode control and to a feasibility study for the use of sliding modes in the control of an automotive fuel stack. Part II presents experimental results of sliding-mode-control application to a laboratory fuel cell and deals with subsystem-based modeling and detailed controller design. Simulation results are contrasted with empirical data and performance, robustness and implementation issues are treated in depth. Possibilities for future research are also laid out. The state-of-the-art research in nonlinear control of fuel cells presented in this volume will be of interest to academics and graduate students working in nonlinear control and sliding modes, particularly those studying fuel-cell systems. Control engineers and designers working with fuel-cell technology in industrial environments can also find new ideas and inspiration from reading Sliding-mode Control of PEM Fuel Cells. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
ISBN 9781447124313 (electronic bk.)
1447124316 (electronic bk.)
1447124308
9781447124306
ISBN/ISSN 10.1007/978-1-4471-2431-3
9786613575005
OCLC # 773925197
Additional Format Print version: Sliding-mode control of PEM fuel cells (NL-LeOCL)338952985


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team