Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Title Molecular water oxidation catalysis : a key topic for new sustainable energy conversion schemes / editor, Antoni Llobet.
Imprint Chichester, West Sussex : John Wiley & Sons, Inc., 2014.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK WILEY EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK WILEY EBOOKS    ONLINE  
View online
Subject Energy harvesting.
Water -- Purification -- Oxidation -- By-products.
Renewable energy sources.
Electric power production from chemical action.
Alt Name Llobet, Antoni, 1960-
Description 1 online resource
Note Includes index.
Print version record and CIP data provided by publisher.
Summary Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase.
Bibliography Note Includes bibliographical references and index.
Contents Machine generated contents note: 1. Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis / Victor S. Batista -- 1.1. Introduction -- 1.2. Structural Studies of the QEC -- 1.3. Dark-Stable State of the OEC -- 1.4. Biomimetic Oxomanganese Complexes -- 1.5. Base- Assisted O -- O Bond Formation -- 1.6. Biomimetic Mn Catalysts for Artificial Photosynthesis -- 1.7. Conclusion -- Acknowledgments -- References -- 2. O -- O Bond Formation by a Heme Protein: The Unexpected Efficiency of Chlorite Dismutase / Jennifer L. DuBois -- 2.1. Introduction -- 2.2. Origins of O2-Evolving Chlorite Dismutases (Clds) -- 2.3. Major Structural Features of the Proteins and their Active Sites -- 2.4. Efficiency, Specificity, and Stability -- 2.5. Mechanistic Insights from Surrogate Reactions with Peracids and Peroxide -- 2.6. Possible Mechanisms -- 2.7. Conclusion -- Acknowledgements -- References -- 3. Ru-Based Water Oxidation Catalysts / Antoni Llobet -- 3.1. Introduction -- 3.2. Proton-Coupled Electron Transfer (PCET) and Water Oxidation Thermodynamics -- 3.3. O -- O Bond Formation Mechanisms -- 3.4. Poly nuclear Ru Water Oxidation Catalysts -- 3.5. Mononuclear Ru WOCs -- 3.6. Anchored Molecular Ru WOCs -- 3.7. Light-Induced Ru WOCs -- 3.8. Conclusion -- Acknowledgments -- References -- 4. Towards the Visible Light-Driven Water Splitting Device: Ruthenium Water Oxidation Catalysts with Carboxylate-Containing Ligands / Licheng Sun -- 4.1. Introduction -- 4.2. Binuclear Ru Complexes -- 4.3. Mononuclear Ru Complexes -- 4.3.1. Ru -- O2N -- N3 Analogs -- 4.3.2. Ru -- O2N2 -- N2 Analogs -- 4.4. Homogeneous Light-Driven Water Oxidation -- 4.4.1. Three-Component System -- 4.4.2. Supramolecular Assembly Approach -- 4.5. Water Oxidation Device -- 4.5.1. Electrochemical Water Oxidation Anode -- 4.5.2. Photo-Anode for Water Oxidation -- 4.6. Conclusion -- References -- 5. Water Oxidation by Ruthenium Catalysts with Non-Innocent Ligands / Etsuko Fujita -- 5.1. Introduction -- 5.2. Water Oxidation Catalyzed by Dinuclear Ruthenium Complexes with NILs -- 5.3. Water Oxidation by Intramolecular O -- O Coupling with [Ru (?-Cl)(bpy)2(btpyan)]3+ -- 5.4. Mononuclear Ru -- Aqua Complexes with a Dioxolene Ligand -- 5.4.1. Structural Characterization -- 5.4.2. Theoretical and Electrochemical Characterization -- 5.5. Mechanistic Investigation of Water Oxidation by Dinuclear Ru Complexes with NILs: Characterization of Key Intermediates -- References -- 6. Recent Advances in the Field of Iridium-Catalyzed Molecular Water Oxidation / Martin Albrecht -- 6.1. Introduction -- 6.2. Bernhard 2008 [11] -- 6.3. Crabtree 2009 -- 6.4. Crabtree 2010 -- 6.5. Macchioni 2010 -- 6.6. Albrecht/Bernhard 2010 -- 6.7. Hetterscheid/Reek 2011 -- 6.8. Crabtree 2011 -- 6.9. Crabtree 2011 -- 6.10. Lin 2011 -- 6.11. Macchioni 2011 -- 6.12. Grotjahn 2011 -- 6.13. Fukuzumi 2011 -- 6.14. Lin 2012 -- 6.15. Crabtree 2012 -- 6.16. Albrecht/Bernhard 2012 -- 6.17. Crabtree 2012 -- 6.18. Beller 2012 -- 6.19. Lin 2012 -- 6.20. Lloblet and Macchioni 2012 -- 6.21. Analysis -- References -- 7. Complexes of First Row d-Block Metals: Manganese / Philipp Kurz -- 7.1. Background -- 7.2. Oxidation States of Manganese in an Aqueous Environment -- 7.3. Dinuclear Manganese Complexes: Syntheses and Structures -- 7.4. Redox and Acid -- Base Chemistry of Mn2-?-WDL Systems -- 7.5. Mn2 Systems: Oxygen Evolution (but not Water Oxidation) Catalysis -- 7.6. Mn2 Complexes/the OEC/Ru2 Catalysts: A Comparison -- 7.7. Heterogeneous Water Oxidation Catalysis by Mn>2 Systems -- 7.8. Conclusion -- Acknowledgements -- References -- 8. Molecular Water Oxidation Catalysts from Iron / Stefan Bernhard -- 8.1. Introduction -- 8.2. Fe-Tetrasulfophthalocyanine -- 8.3. Fe-TAML -- 8.4. Fe-mcp -- 8.5. Fe2O3 as a Microheterogeneous Catalyst -- 8.6. Conclusion -- References -- 9. Water Oxidation by Co-Based Oxides with Molecular Properties / Holger Dau -- 9.1. Introduction -- 9.2. CoCat Formation -- 9.3. Structure and Structure -- Function Relations -- 9.4. Functional Characterization -- 9.5. Directly Light-Driven Water Oxidation -- References -- 10. Developing Molecular Copper Complexes for Water Oxidation / James M. Mayer -- 10.1. Introduction -- 10.2. Biomimetic Approach -- 10.2.1. Thermochemistry: Developing Oxidant/Base Combinations as PCET Reagents -- 10.2.2. Copper Complexes with Alkylamine Ligands -- 10.2.3. Copper Complexes with Anionic Ligands -- 10.2.4. Lessons Learned: Thermochemical Insights and Oxidant/Base Compatibility -- 10.3. Aqueous System: Electrocatalysis with (bpy)Cu(II) Complexes -- 10.3.1. System Selection: bpy + Cu -- 10.3.2. Observing Electrocatalysis -- 10.3.3. Catalyst Turnover Number and Turnover Frequency -- 10.3.4. Catalyst Speciation: Monomer, Dimer, or Nanoparticles -- 10.4. Conclusion -- Acknowledgement -- References -- 11. Polyoxometalate Water Oxidation Catalytic Systems / Craig L. Hill -- 11.1. Introduction -- 11.2. Recent POM WOCs -- 11.3. Assessing POM WOC Reactivity -- 11.4. Ru(bpy)32+/S2O82 System -- 11.5. Ru(bpy)33+ as an Oxidant for POM WOCs -- 11.6. Additional Aspects of WOC System Stability -- 11.7. Techniques for Assessing POM WOC Stability -- 11.8. Conclusion -- Acknowledgments -- References -- 12. Quantum Chemical Characterization of Water Oxidation Catalysts / Christopher J. Cramer -- 12.1. Introduction -- 12.2. Computational Details -- 12.2.1. Density Functional Theory Calculations -- 12.2.2. Multiconfigurational Calculations -- 12.3. Methodology -- 12.3.1. Solvation and Standard Reduction Potentials -- 12.3.2. Multideterminantal State Energies -- 12.4. Water Oxidation Catalysts -- 12.4.1. Ruthenium-Based Catalysts -- 12.4.2. Cobalt-Based Catalysts -- 12.4.3. Iron-Based Catalysts -- 12.5. Conclusion -- References.
ISBN 9781118698624 (ePub)
1118698622 (ePub)
9781118698631 (Adobe PDF)
1118698630 (Adobe PDF)
9781118698648 (electronic bk.)
1118698649 (electronic bk.)
1118413377
9781118413371
9781118413371 (cloth)
OCLC # 870967685
Additional Format Print version: Molecular water oxidation catalysis. Chichester, West Sussex : John Wiley & Sons, Inc., 2014 9781118413371 (DLC) 2014004158


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team