Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Author Burk, Frank.
Title A garden of integrals / Frank Burk.
Imprint Washington, DC : Mathematical Association of America, [2007]
©2007

Author Burk, Frank.
Series Dolciani mathematical expositions ; no. 31
Dolciani mathematical expositions ; no. 31.
Subject Integrals.
Alt Name Scully, Terence, 1935-
Author Burk, Frank.
Series Dolciani mathematical expositions ; no. 31
Dolciani mathematical expositions ; no. 31.
Subject Integrals.
Alt Name Scully, Terence, 1935-
Description 1 online resource (xiv, 281 pages) : illustrations.
polychrome rdacc
Bibliography Note Includes bibliographical references and index.
Contents Foreword -- An historical overview -- 1.1. Rearrangements -- 1.2. The lune of Hippocrates -- 1.3. Exdoxus and the method of exhaustion -- 1.4. Archimedes' method -- 1.5. Gottfried Leibniz and Isaac Newton -- 1.6. Augustin-Louis Cauchy -- 1.7. Bernhard Riemann -- 1.8. Thomas Stieltjes -- 1.9. Henri Lebesgue -- 1.10. The Lebesgue-Stieltjes integral -- 1.11. Ralph Henstock and Jaroslav Kurzweil -- 1.12. Norbert Wiener -- 1.13. Richard Feynman -- 1.14. References -- 2. The Cauchy integral -- 2.1. Exploring integration -- 2.2. Cauchy's integral -- 2.3. Recovering functions by integration -- 2.4. Recovering functions by differentiation -- 2.5. A convergence theorem -- 2.6. Joseph Fourier -- 2.7. P.G. Lejeune Dirichlet -- 2.8. Patrick Billingsley's example -- 2.9. Summary -- 2.10. References -- 3. The Riemann integral -- 3.1. Riemann's integral -- 3.2. Criteria for Riemann integrability -- 3.3. Cauchy and Darboux criteria for Riemann integrability -- 3.4. Weakening continuity -- 3.5. Monotonic functions are Riemann integrable -- 3.6. Lebesgue's criteria -- 3.7. Evaluating à la Riemann -- 3.8. Sequences of Riemann integrable functions -- 3.9. The Cantor set -- 3.10. A nowhere dense set of positive measure -- 3.11. Cantor functions -- 3.12. Volterra's example -- 3.13. Lengths of graphs and the Cantor function -- 3.14. Summary -- 3.15. References.
4. Riemann-Stieltjes integral -- 4.1. Generalizing the Riemann integral-- 4.2. Discontinuities -- 4.3. Existence of Riemann-Stieltjes integrals -- 4.4. Monotonicity of [null] -- 4.5. Euler's summation formula -- 4.6. Uniform convergence and R-S integration -- 4.7. References -- 5. Lebesgue measure -- 5.1. Lebesgue's idea -- 5.2. Measurable sets -- 5.3. Lebesgue measurable sets and Carathéodory -- 5.4. Sigma algebras -- 5.5. Borel sets -- 5.6. Approximating measurable sets -- 5.7. Measurable functions -- 5.8. More measureable functions -- 5.9. What does monotonicity tell us? -- 5.10. Lebesgue's differentiation theorem -- 5.11. References -- 6. The Lebesgue-Stieltjes integral -- 6.1. Introduction -- 6.2. Integrability : Riemann ensures Lebesgue -- 6.3. Convergence theorems -- 6.4. Fundamental theorems for the Lebesgue integral -- 6.5. Spaces -- 6.6. L²[-pi, pi] and Fourier series -- 6.7. Lebesgue measure in the plane and Fubini's theorem -- 6.8. Summary-- References -- 7. The Lebesgue-Stieltjes integral -- 7.1. L-S measures and monotone increasing functions -- 7.2. Carathéodory's measurability criterion -- 7.3. Avoiding complacency -- 7.4. L-S measures and nonnegative Lebesgue integrable functions -- 7.5. L-S measures and random variables -- 7.6. The Lebesgue-Stieltjes integral -- 7.7. A fundamental theorem for L-S integrals -- 7.8. References.
8. The Henstock-Kurzweil integral -- 8.1. The generalized Riemann integral -- 8.2. Gauges and [infinity]-fine partitions -- 8.3. H-K integrable functions -- 8.4. The Cauchy criterion for H-K integrability -- 8.5. Henstock's lemma -- 8.6. Convergence theorems for the H-K integral -- 8.7. Some properties of the H-K integral -- 8.8. The second fundamental theorem -- 8.9. Summary-- 8.10. References -- 9. The Wiener integral -- 9.1. Brownian motion -- 9.2. Construction of the Wiener measure -- 9.3. Wiener's theorem -- 9.4. Measurable functionals -- 9.5. The Wiener integral -- 9.6. Functionals dependent on a finite number of t values -- 9.7. Kac's theorem -- 9.8. References -- 10. Feynman integral -- 10.1. Introduction -- 10.2. Summing probability amplitudes -- 10.3. A simple example -- 10.4. The Fourier transform -- 10.5. The convolution product -- 10.6. The Schwartz space -- 10.7. Solving Schrödinger problem A -- 10.8. An abstract Cauchy problem -- 10.9. Solving in the Schwartz space -- 10.10. Solving Schrödinger problem B -- 10.11. References -- Index -- About the author.
Note Print version record.
ISBN 9781614442097 (electronic bk.)
1614442096 (electronic bk.)
9780883853375
088385337X
OCLC # 793207766
Additional Format Print version: Burk, Frank. Garden of integrals. Washington, DC : Mathematical Association of America, ©2007 9780883853375 (DLC) 2007925414 (OCoLC)156995360


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team