|
LOCATION | CALL # | STATUS | MESSAGE |
---|---|---|---|
MUSKINGUM STACKS | QH506 .B35 2001 | AVAILABLE |
LOCATION | CALL # | STATUS | MESSAGE |
---|---|---|---|
MUSKINGUM STACKS | QH506 .B35 2001 | AVAILABLE |
|
Table of Contents | ||||||
---|---|---|---|---|---|---|
Series Foreword | ||||||
Preface | ||||||
1 | Introduction | 1 | ||||
2 | Machine-Learning Foundations: The Probabilistic Framework | 47 | ||||
3 | Probabilistic Modeling and Inference: Examples | 67 | ||||
4 | Machine Learning Algorithms | 81 | ||||
5 | Neural Networks: The Theory | 99 | ||||
6 | Neural Networks: Applications | 113 | ||||
7 | Hidden Markov Models: The Theory | 165 | ||||
8 | Hidden Markov Models: Applications | 189 | ||||
9 | Probabilistic Graphical Models in Bioinformatics | 225 | ||||
10 | Probabilistic Models of Evolution: Phylogenetic Trees | 265 | ||||
11 | Stochastic Grammars and Linguistics | 277 | ||||
12 | Microarrays and Gene Expression | 299 | ||||
13 | Internet Resources and Public Databases | 323 | ||||
A: Statistics | 347 | |||||
B: Information Theory, Entropy, and Relative Entropy | 357 | |||||
C: Probabilistic Graphical Models | 365 | |||||
D | HMM Technicalities, Scaling, Periodic Architectures, State Functions, and Dirichlet Mixtures | 375 | ||||
E | Gaussian Processes, Kernel Methods, and Support Vector Machines | 387 | ||||
F: Symbols and Abbreviations | 399 | |||||
References | 409 | |||||
Index | 447 |
If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team