Return to home page
Searching: Muskingum library catalog
In response to the COVID-19 outbreak, statewide lending via OhioLINK and SearchOhio has been suspended. OPAL member libraries have closed or are operating at reduced service levels. Please contact your library with specific lending requests or if you need assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
BOOK
Author Baldi, Pierre.
Title Bioinformatics : the machine learning approach / Pierre Baldi, Søren Brunak.
Imprint Cambridge, Mass. : MIT Press, [2001]
©2001
Edition Second edition.

LOCATION CALL # STATUS MESSAGE
 MUSKINGUM STACKS  QH506 .B35 2001    AVAILABLE  
LOCATION CALL # STATUS MESSAGE
 MUSKINGUM STACKS  QH506 .B35 2001    AVAILABLE  
Author Baldi, Pierre.
Series Adaptive computation and machine learning
Adaptive computation and machine learning. http://id.loc.gov/authorities/names/n97066095
Subject Bioinformatics.
Molecular biology -- Computer simulation.
Molecular biology -- Mathematical models.
Neural networks (Computer science)
Machine learning.
Markov processes.
Computational Biology -- methods.
Artificial Intelligence.
Markov Chains.
Models, Theoretical.
Neural Networks, Computer.
Alt Name Brunak, Søren.
Description xxi, 452 pages : illustrations ; 24 cm.
Edition Second edition.
Note "A Bradford book"
Bibliography Note Includes bibliographical references (p. 409-445).
Contents Introduction -- Machine-learning foundations : the probabilistic framework -- Probabilistic modeling and inference : examples -- Machine learning algorithms -- Neural networks : the theory -- Neural networks : applications -- Hidden Markov models: the theory -- Hidden Markov models: applications -- Probabilistic graphical models in bioinformatics -- Probabilistic models of evolution : phylogenitc trees -- Stochastic grammars and linguistics -- Microarrays and gene expression -- Internet resources and public databases --
ISBN 026202506X (hc. : alk. paper)
OCLC # 45951728
Table of Contents
 Series Foreword 
 Preface 
1Introduction1
2Machine-Learning Foundations: The Probabilistic Framework47
3Probabilistic Modeling and Inference: Examples67
4Machine Learning Algorithms81
5Neural Networks: The Theory99
6Neural Networks: Applications113
7Hidden Markov Models: The Theory165
8Hidden Markov Models: Applications189
9Probabilistic Graphical Models in Bioinformatics225
10Probabilistic Models of Evolution: Phylogenetic Trees265
11Stochastic Grammars and Linguistics277
12Microarrays and Gene Expression299
13Internet Resources and Public Databases323
 A: Statistics347
 B: Information Theory, Entropy, and Relative Entropy357
 C: Probabilistic Graphical Models365
DHMM Technicalities, Scaling, Periodic Architectures, State Functions, and Dirichlet Mixtures375
EGaussian Processes, Kernel Methods, and Support Vector Machines387
 F: Symbols and Abbreviations399
 References409
 Index447


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team