Return to home page
Searching: Muskingum library catalog
In response to the COVID-19 outbreak, statewide lending via OhioLINK and SearchOhio has been suspended. OPAL member libraries have closed or are operating at reduced service levels. Please contact your library with specific lending requests or if you need assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Author Schaefer, H. E. (Hans Eckart), 1936-
Title Nanoscience / by Hans-Eckhardt Schaefer.
Imprint Berlin ; London : Springer, 2010.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Author Schaefer, H. E. (Hans Eckart), 1936-
Series Nanoscience and technology
Nanoscience and technology. http://id.loc.gov/authorities/names/n97068983
Subject Nanoscience.
Description 1 online resource.
polychrome rdacc http://rdaregistry.info/termList/RDAColourContent/1003
Contents Note continued: 2.1.2. Constant Current Imaging (CCI) -- 2.1.3. Constant-Height Imaging (CHI) -- 2.1.4. Synchrotron Radiation Assisted STM (SRSTM) for Nanoscale Chemical Imaging -- 2.1.5. Studying Bulk Properties and Volume Atomic Defects by STM -- 2.1.6. Radiofrequency STM -- 2.2. Atomic Force Microscopy (AFM) -- 2.2.1. Topographic Imaging by AFM in Contact Mode -- 2.2.2. Frictional Force Microscopy -- 2.2.3. Non-contact force Microscopy -- 2.2.4. Chemical Identification of Individual Surface Atoms by AFM -- 2.2.5. AFM in Bionanotechnology -- 2.3. Scanning Near-Field Optical Microscopy (SNOM) -- 2.3.1. Scanning Near-Field Optical Microscopy (SNOM) -- 2.3.2. Near-Field Scanning Interferometric Apertureless Microscopy (SIAM) -- 2.3.3. Mapping Vector Fields in Nanoscale Near-Field Imaging -- 2.3.4. Terahertz Near-Field Nanoscopy of Mobile Carriers in Semiconductor Nanodevices -- 2.4. Far-Field Optical Microsopy Beyond the Diffraction Limit -- 2.4.1. Stimulated Emission Depletion (STED) Optical Microscopy -- 2.4.2. Stochastic Optical Reconstruction Microscopy (2D-STORM) -- 2.4.3. Three-Dimensional Far-Field Optical Nanoimaging of Cells -- 2.4.4. Video-Rate Far-Field Nanooptical Observation of Synaptic Vesicle Movement -- 2.5. Magnetic Scanning Probe Techniques -- 2.5.1. Magnetic Force Microscopy (MFM) -- 2.5.2. Spin-Polarized Scanning Tunneling Microscopy (SP-STM) -- 2.6. Progress in Electron Microscopy -- 2.6.1. Aberration-Corrected Electron Microscopy -- 2.6.2. TEM Nanotomography and Holography -- 2.6.3. Cryoelectron Microscopy and Tomography -- 2.7. X-Ray Microscopy -- 2.7.1. Lens-Based X-Ray Microscopy -- 2.7.2. X-Ray Nanotomography -- 2.7.3. Lens-Less Coherent X-Ray Diffraction Imaging -- 2.7.4. Upcoming X-Ray Free-Electron Lasers (XFEL) and Single Biomolecule Imaging -- 2.8. Three-Dimensional Atom Probes (3DAPs) -- 2.9. Summary.
Note continued: References -- 3. Synthesis -- 3.1. Nanocrystals and Clusters -- 3.1.1. From Supersaturated Vapors -- 3.1.2. Particle Synthesis by Chemical Routes -- 3.1.3. Semiconductor Nanocrystals (Quantum Dots) -- 3.1.4. Doping of Nanocrystals -- 3.1.5. Magnetic Nanoparticles -- 3.2. Superlattices of Nanocrystals in Two (2D) and Three (3D) Dimensions -- 3.2.1. Free-Standing Nanoparticle Superlattice Sheets -- 3.2.2. 3D Superlattices of Binary Nanoparticles -- 3.3. Nanowires and Nanofibers -- 3.3.1. Vapor-Liquid-Solid (VLS) Growth of Nanowires -- 3.3.2. Pine Tree Nanowires with Eshelby Twist -- 3.3.3. Ultrathin Nanowires -- 3.3.4. Electrospinning of Nanofibers -- 3.3.5. Bio-Quantum-Wires -- 3.3.6. Formation of Arsenic Sulfide Nanotubes by the Bacterium Shewanella sp. Strain HN-41 -- 3.4. Nanolayers and Multilayered Systems -- 3.4.1. Layered Oxide Heterostructures by Molecular Beam Epitaxy (MBE) -- 3.4.2. Atomic Layer Deposition (ALD) -- 3.5. Shape Control of Nanoparticles -- 3.6. Nanostructures with Complex Shapes -- 3.7. Nanostructures by Ball Milling or Strong Plastic Deformation -- 3.8. Carbon Nanostructures -- 3.8.1. Fullerenes -- 3.8.2. Single-Walled Carbon Nanotubes (SWNTs)- Synthesis and Characterization -- 3.8.3. Graphene -- 3.9. Nanoporous Materials -- 3.9.1. Zeolites and Mesoporous Metal Oxides -- 3.9.2. Nanostructured Germanium -- 3.9.3. Nanoprous Metals -- 3.9.4. Single Nanopores -- Potentials for DNA Sequencing -- 3.10. Lithography -- 3.10.1. UV Optical Lithography -- 3.10.2. Electron Beam Lithography -- 3.10.3. Proton-Beam Writing -- 3.10.4. Nanoimprint Lithography (NIL) -- 3.10.5. Dip-Pen Nanolithography (DPN) -- 3.10.6. Block Copolymer Lithography -- 3.10.7. Protein Nanolithography -- 3.10.8. Fabrication of Nanostructures in Supercritical Fluids -- 3.10.9. Two-Photon Lithography for Microfabrication.
Note continued: 3.11. Summary -- References -- 4. Nanocrystals -- Nanowires -- Nanolayers -- 4.1. Nanocrystals -- 4.1.1. Synthesis of Nanocrystals -- 4.1.2. Metal Nanocrystallites -- Structure and Properties -- 4.1.3. Semiconductor Quantum Dots -- 4.1.4. Colorful Nanoparticles -- 4.1.5. Double Quantum Dots for Operating Single-Electron Spins as Qubits for Quantum Computing -- 4.1.6. Quantum Dot Data Storage Devices -- 4.2. Nanowires and Metamaterials -- 4.2.1. Metallic Nanowires -- 4.2.2. Negative-Index Materials (Metamaterials) with Nanostructures -- 4.2.3. Semiconductor Nanowires -- 4.2.4. Molecular Nanowires -- 4.2.5. Conduction Through Individual Rows of Atoms and Single-Atom Contacts -- 4.3. Nanolayers and Multilayers -- 4.3.1. 2D Quantum Wells -- 4.3.2. 2D Quantum Wells in High Magnetic Fields -- 4.3.3. Integral Quantum Hall Effect (IQHE) -- 4.3.4. Fractional Quantum Hall Effect (FQHE) -- 4.3.5. 2D Electroninc Properties of Carbon Nanotubes -- 4.3.6. Multilayer EUV and X-Ray Mirrors with High Reflectivity -- 4.4. Summary -- References -- 5. Carbon Nanostructures -- Tubes, Graphene, Fullerenes, Wave-Particle Duality -- 5.1. Nanotubes -- 5.1.1. Synthesis of Carbon Nanotubes -- 5.1.2. Structure of Carbon Nanotubes -- 5.1.3. Electronic Properties of Carbon Nanotubes -- 5.1.4. Heteronanocontacts Between Carbon Nanotubes and Metals -- 5.1.5. Optoelectronic Properties of Carbon Nanotubes -- 5.1.6. Thermal Properties of Carbon Nanotubes -- 5.1.7. Mechanical Properties of Carbon Nanotubes -- 5.1.8. Carbon Nanotubes as Nanoprobes and Nanotweezers in Physics, Chemistry, and Biology -- 5.1.9. Other Tubular 1D Carbon Nanostructures -- 5.1.10. Filling and Functionalizing Carbon Nanotubes -- 5.1.11. Nanotubes from Materials Other than Pure Carbon -- 5.1.12. Application of Carbon Nanotubes -- 5.2. Graphene.
Note continued: 5.2.1. Imaging of Graphene, Defects, and Atomic Dynamics -- 5.2.2. Electronic Structure of Graphene, Massless Relativistic Dirac Fermions, and Chirality -- 5.2.3. Quantum Hall Effect -- 5.2.4. Anomalous QHE in Bilayer Graphene -- 5.2.5. Absence of Localization -- 5.2.6. From Graphene to Graphane -- 5.2.7. Graphene Devices -- 5.3. Fullerenes, Large Carbon Molecules, and Hollow Cages of Other Materials -- 5.3.1. Fullerenes -- 5.3.2. Fullerene Compounds -- 5.3.3. Superheating and Supercooling of Metals Encapsulated in Fullerene-Like Shells -- 5.3.4. Large Carbon Molecules -- 5.3.5. Hollow Cages of Other Materials -- 5.4. Fullerenes and the Wave-Particle Duality -- 5.5. Summary -- References -- 6. Nanocrystalline Materials -- 6.1. Molecular Dynamics Simulation of the Structure of Grain Boundaries and of the Plastic Deformation of Nanocrystalline Materials -- 6.2. Grain Boundary Structure -- 6.3. Plasticity and Hall-Petch Behavior of Nanocrystalline Materials -- 6.4. Plasticity Studies by Nanoindentation -- 6.5. Ultrastrength Nanomaterials -- 6.6. Enhancement of Both Strength and Ductility -- 6.7. Superplasticity -- 6.8. Fatigue -- 6.9. Nanocomposites -- 6.9.1. Metallic Nanocomposites -- 6.9.2. Ceramic/Metal Nanocomposites with Diamond-Like Hardening -- 6.9.3. Oxide/Dye/Polymer Nanocomposites-Optical Properties -- 6.9.4. Polymer Nanocomposites -- 6.10. Nanocrystalline Ceramics -- 6.10.1. Low Thermal Expansion Nanocrystallite-Glass Ceramics -- 6.11. Atomic Diffusion in Nanocrystalline Materials -- 6.12. Surface-Controlled Actuation and Manipulation of the Properties of Nanostructures -- 6.12.1. Charge-Induced Reversible Strain in Nanocrystalline Metals -- 6.12.2. Artificial Muscles Made of Carbon Nanotubes -- 6.12.3. Electric Field-Controlled Magnetism in Nanostructured Metals.
Note continued: 6.12.4. Surface Chemistry-Driven Actuation in Nanoporous Gold -- 6.13. Summary -- References -- 7. Nanomechanics-Nanophotonics-Nanofluidics -- 7.1. Nanoelectromechanical Systems (NEMS) -- 7.1.1. High-Frequency Resonators -- 7.1.2. Nanoelectromechanical Switches -- 7.2. Putting Mechanics into Quantum Mechanics-Cooling by Laser Irradiation -- 7.3. Nanoadhesion: From Geckos to Materials -- 7.3.1. Materials with Bioinspired Adhesion -- 7.3.2. Climbing Robots and Spiderman Suit -- 7.4. Single-Photon and Entangled-Photon Sources and Photon Detectors, Based on Quantum Dots -- 7.4.1. Single-Photon Sources -- 7.4.2. Entangled-Photon Sources -- 7.4.3. Single-Photon Detection -- 7.5. Quantum Dot Lasers -- 7.6. Plasmonics -- 7.6.1. Plasmon-Controlled Synthesis of Metallic Nanoparticles -- 7.6.2. Extinction Behavior of Nanoparticles and Arrays -- 7.6.3. Plasmonic Nanocavities -- 7.6.4. Surface-Enhanced Raman Spectroscopy (SERS) and Fluorescence -- 7.6.5. Receiver-Transmitter Nanoantenna Pairs -- 7.6.6. Electro-optical Nanotraps for Neutral Atoms -- 7.6.7. Unifying Nanophotonics and Nanomechanics -- 7.6.8. Integration of Optical Manipulation and Nanofluidics -- 7.6.9. Single-Photon Transistor -- 7.6.10. Application Prospects of Plasmonics -- 7.7. 2D-Confinement of Fluids, Wetting, and Spreading -- 7.7.1. Phase Transitions Induced by Nanoconfinement of Liquid Water -- 7.7.2. Fluid Flow and Wetting -- 7.7.3. Supeerhydrophobic Surfaces -- 7.7.4. Liquid Spreading Under Nanoscale Confinement -- 7.8. Fast Transport of Liquids and Gases Through Carbon Nanotubes -- 7.8.1. Limits of Continuum Hydrodynamics at the Nanoscale -- 7.8.2. Water Transport in CNTs -- 7.8.3. Gas Transport in CNTs -- 7.9. Nanodroplets -- 7.9.1. Dynamics of Nanoscopic Water in Micelles -- 7.9.2. Nanoscale Double Emulsions.
Note continued: 7.9.3. Zeptoliter Liquid Alloy Droplets and Surface-Induced Crystallization -- 7.9.4. Superfluid Helium Nanodroplets -- 7.10. Nanobubbles -- 7.10.1. Stable Surface Nanobubbles -- 7.10.2. Polygonal Nanopatterning of Stable Microbubbles -- 7.10.3. Bubbles for Tracking the Trajectory of an Individual Electron Immersed in Liquied Helium -- 7.11. Summary -- References -- 8. Nanomagnetism -- 8.1. Magnetic Imaging -- 8.1.1. Magnetic Force Microscopy (MFM) and Magnetic Exchange Force Microscopy (MEx FM) -- 8.1.2. Spin-Polarized Scanning Tunneling Microscopy (SP-STM) and Manipulation -- 8.1.3. Electron Microscopy -- 8.1.4. X-Ray Magnetic Circular Dichroism (XMCD) -- 8.2. Size and Dimensionality Effects in Nanomagnetism-Single Atoms, Clusters (0D), Wires (1D), Films (2D) -- 8.2.1. Single Atoms -- 8.2.2. Finite-Size Atomic Clusters -- 8.2.3. Ferromagnetic Nanowires -- 8.2.4. Magnetic Films (2D) -- 8.2.5. Curie Temperature Tc in Dependence of Size, Dimensionality, and Charging -- 8.3. Soft-Magnetic Materials -- 8.4. Nanostructured Hard Magnets -- 8.5. Antiferromagnetic and Complex Magnetic Nanostructures -- 8.5.1. Spin Structure of Antiferromagnetic Domain Walls -- 8.5.2. Antiferromagnetic Monatomic Chains -- 8.5.3. Antiferromagnetic Nanoparticles -- 8.5.4. Complex Magnetic Structure of an Iron Monolayer on Ir (111) -- 8.6. Ferromagnetic Nanorings -- 8.7. Current-Induced Domain Wall Motion in Magnetic Nanostructures -- 8.8. Single Molecule Magnets -- 8.9. Multiferroic Nanostructures -- 8.10. Magnetically Tunable Photonic Crystals of Superparamagnetic Colloids -- 8.11. Nanomagnets in Bacteria -- 8.11.1. In Vivo Doping of Magnetosomes -- 8.11.2. Magnetosomes for Highly Sensitive Biomarker Detection -- 8.12. Summary -- References -- 9. Nanotechnology for Computers, Memories, and Hard Disks -- 9.1. Transistors and Integrated Circuits.
Note continued: 9.2. Extreme Ultraviolet (EUV) Lithography-The Future Technology of Chip Fabrication -- 9.3. Flash Memory -- 9.4. Emerging Solid State Memory Technologies -- 9.4.1. Phase-Change Memory Technology -- 9.4.2. Magnetoresistive Random-Access Memories (MRAM) -- 9.4.3. Ferroelectric Random-Access Memories (FeRAM) -- 9.4.4. Resistance Random Access Memories (ReRAMs) -- 9.4.5. Carbon-Nanotube (CNT)-Based Data Storage Devices (NRAM) -- 9.4.6. Magnetic Domain Wall Racetrack Memories (RM) -- 9.4.7. Single-Molecule Mangnets -- 9.4.8. 10 Terabit/Inch2 Block Copolymer (BCP) Storage Media -- 9.5. Magnetic Hard Disks and Write/Read Heads -- 9.5.1. Extensions to Hard Disk Magnetic Recording -- 9.5.2. Magnetic Write Head and Read Back Head -- 9.6. Optical Hard Disks -- 9.6.1. Principles and Materials Considerations -- 9.6.2. Magneto-Optical Recording -- 9.6.3. Multilayer Recording -- 9.6.4. Holographic Data Storage -- 9.7. High-k Dielectrics for Replacing SiO2 Insulation in Memory and Logic Devices -- 9.8. Low-k Materials as Interlayer Dielectrics (ILD) -- 9.9. Summary -- References -- 10. Nanochemistry-From Supramolecular Chemistry to Chemistry on the Nanoscale, Catalysis, Renewable Energy, Batteries, and Environmental Protection -- 10.1. Supramolecular Chemistry -- 10.1.1. Architecture in Supramolecular Chemistry -- 10.1.2. Supramolecular Materials -- 10.1.3. Molecular Recognition, Reactivity, Catalysis, and Transport -- 10.1.4. Molecular Photonics and Electronics -- 10.1.5. Molecular Recognition and Self-Organization -- 10.1.6. DNA Self-Assembled Nanostructures -- 10.1.7. Supramolecular DNA Polyhedra -- 10.2. Large Inorganic Hollow Clusters -- 10.2.1. Nano-hedgehogs Shaped from Molybdenum Oxide Building Blocks -- 10.2.2. Vesicle-Like Structures with a Diameter of 90 nm -- 10.2.3. Nitride-Phosphate Clathrate.
Note continued: 10.3. Chemistry on the Nanoscale -- 10.3.1. Nano Test Tubes -- 10.3.2. Dynamics in Water Nanodroplets -- 10.3.3. Targeted Delivery and Reaction of Single Molecules -- 10.4. Catalysis -- 10.4.1. Au Nanocrystals -- 10.4.2. Pt Nanocatalysts -- 10.4.3. Pd Nanocatalysts -- 10.4.4. MoS2 Nanocatalysts as Model Catalysts for Hydrodesulfurization (HDS) -- 10.4.5. In Situ Phase Analysis of a Catalyst -- 10.5. Renewable Energy -- 10.6. Solar Energy-Photovolataics -- 10.6.1. Nitrogen-Doped Nanocrystalline TiO2 Films Sensitized by CdSe Quantum Dots -- 10.6.2. Polymer-Based Solar Cells -- 10.6.3. Silicon Nanostructures -- 10.7. Solar Energy-Thermal Conversion -- 10.8. Antireflection (AR) Coating -- 10.9. Conversion of Mechanical Energy into Electricity -- 10.10. Hydrogen Storage and Fuel Cells -- 10.11. Lithium Ion Batteries and Supercapacitors -- 10.11.1. Carbon Nanotube Cathodes -- 10.11.2. Tin-Based Anodes -- 10.11.3. LiFePO4 Cathodes -- 10.11.4. Supercapacitors -- 10.12. Environmental Nanotechnology -- 10.13. Summary -- References -- 11. Biology on the Nanoscale -- 11.1. Cell-Nanosized Components, Mechanics, and Diseases -- 11.1.1. Cell Structure -- 11.1.2. Mechanics, Motion, and Deformation of Cells -- 11.1.3. Cell Adhesion -- 11.1.4. Disease-Induced Alterations of the Mechanical Properties of Single Living Cells -- 11.1.5. Control of Cell Functions by the Size of Nanoparticles Alone -- 11.2. Nanoparticles for Bioanalysis -- 11.2.1. Various Materials of Nanoparticles -- 11.2.2. Surface Functionalization of Nanoparticles -- 11.2.3. Examples for Labeling Biosystems by Nanoparticles -- 11.2.4. In Vivo and Deep Tissue Imaging -- 11.2.5. Nanoparticle-DNA Interaction -- 11.2.6. Nanoparticle-Protein Interaction -- 11.2.7. Biodistribution of Nanoparticles -- 11.3. Nanomechanics of DNA, Proteins, and Cells.
Note continued: 11.3.1. DNA Elasticity -- 11.3.2. From Elasticity to Enzymology -- 11.3.3. Unzipping of DNA -- 11.3.4. Protein Mechanics -- 11.4. Molecular Motors and Machines -- 11.4.1. Myosin -- 11.4.2. Kinesin -- 11.4.3. Motor-Cargo Linkage and Regulation -- 11.4.4. Diseases -- 11.4.5. ATP Synthase (ATPase) -- 11.5. Membrane Channels -- 11.5.1. K+ Channel -- 11.5.2. Ca2+ Channel -- 11.5.3. Chloride (C1- ) Channel -- 11.5.4. Aquaporin Water Channel -- 11.5.5. Protein Channels -- 11.5.6. Pentameric Ligand-Gated Ion Channels -- 11.5.7. Nuclear Pores -- 11.6. Biomimetics -- 11.6.1. Energy Conversion -- 11.6.2. Sensing -- 11.6.3. Signaling -- 11.6.4. Molecular Motors -- 11.6.5. Materials -- 11.6.6. Artificial Cells-Prospects for Biotechnology -- 11.7. Bone and Teeth -- 11.7.1. Bone -- 11.7.2. Tooth Structure and Restoration -- 11.8. Photonic Bionanostructures-Colors of Butterflies and Beetles -- 11.8.1. Structures -- 11.8.2. Formation Processes of Photonic Bionanostructures -- 11.9. Lotus Leaf Effect-Hydrophobicity and Self-Cleaning -- 11.10. Food Nanostructures -- 11.11. Cosmetics -- 11.11.1. Skin Care -- 11.11.2. Encapsulating a Fragrance in Nanocapsules -- 11.11.3. PbS Nanocrystals in Ancient Hair Dyeing -- 11.12. Summary -- References -- 12. Nanomedicine -- 12.1. Introduction -- 12.2. Diagnostic Imaging and Molecular Detection Techniques -- 12.2.1. Magnetic Resonance Imaging (MRI) -- 12.2.2. CT Contrast Enhancement -- 12.2.3. Contrast-Enhanced Ultrasound Techniques -- 12.2.4. Positron Emission Tomography (PET) -- 12.2.5. Raman Spectroscopy Imaging -- 12.2.6. Photoacoustic Tomography -- 12.2.7. Biomolecular Detection for Medical Diagnostics -- 12.3. Nanoarrays and Nanofluidics for Diagnosis and Therapy -- 12.3.1. Lab-on-a-Chip -- 12.3.2. Microarrays and Nanoarrays.
Note continued: 12.3.3. Microfluidics and Nanofluidics -- 12.3.4. Integration of Nanodevices in Medical Diagnostics -- 12.3.5. Implanted Chips -- 12.4. Targeted Drug Delivery by Nanoparticles -- 12.4.1. Porous Silica Nanoparticles for Targeting Cancer Cells -- 12.4.2. Gene Therapy and Drug Delivery for Cancer Treatment -- 12.4.3. Liposomes and Micelles as Nanocarriers for Diagnosis and Drug Delivery -- 12.4.4. Drug Delivery by Magnetic Nanoparticles -- 12.4.5. Nanoshells for Thermal Drug Delivery -- 12.4.6. Photodynamic Therapy -- 12.5. Brain Cancer Diagnosis and Therapy with Nanoplatforms -- 12.5.1. General Comments -- 12.5.2. MRI Contrast Enhancement with Magnetic Nanoparticles -- 12.5.3. Nanoparticles for Chemotherapy -- 12.5.4. Targeted Multifunctional Polyacrylamide (PAA) Nanoparticles for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI) -- 12.6. Hyperthermia Treatment of Tumors by Using Targeted Nanoparticles -- 12.6.1. Alternating Magnetic Fields for Heating Magnetic Nanoparticles -- 12.6.2. Radiofrequency Heating of Carbon Nanotubes -- 12.6.3. Light-Induced Heating of Nanoshells -- 12.7. Nanoplatforms in Other Diseases and Medical Fields -- 12.7.1. Heart Diseases -- 12.7.2. Diabetes -- 12.7.3. Lung Therapy-Targeted Delivery of Magnetic Nanoparticles and Drug Delivery -- 12.7.4. Alzheimer's Disease (AD) -- 12.7.5. Ophthalmology -- 12.7.6. Viral and Bacterial Diseases -- 12.8. Nanobiomaterials for Artificial Tissues -- 12.8.1. Enhancement of Osteoblast Function by Carbon Nanotubes on Titanium Implants -- 12.8.2. Nanostructured Bioceramics for Bone Restoration -- 12.8.3. Fibrous Nanobiomaterials as Bone Tissue Engineering Scaffolds -- 12.8.4. Tissue Engineering of Skin -- 12.8.5. Angiogenesis -- 12.8.6. Promoting Neuron Adhesion and Growth -- 12.8.7. Spinal Cord In Vitro Surrogate.
Note continued: 12.8.8. Efforts for Synthesizing Chromosomes -- 12.9. Nanosurgery-Present Efforts and Future Prospects -- 12.9.1. Femtosecond Laser Surgery -- 12.9.2. Sentinel Lymph Node Surgery Making Use of Quantum Dots -- 12.9.3. Progress Toward Nanoneurosurgery -- 12.9.4. Future Directions in Neurosurgery -- 12.10. Nanodentistry -- 12.10.1. Nanocomposites in Dental Restoration -- 12.10.2. Nanoleakage of Adhesive Interfaces -- 12.10.3. Nanostructured Bioceramics for Maxillofacial Applications -- 12.10.4. Release of Ca-PO4 from Nanocomposites for Remineralization of Tooth Lesions and Inhibition of Caries -- 12.10.5. Growing Replacement Bioteeth -- 12.11. Risk Assessment Strategies and Toxicity Considerations -- 12.11.1. Risk Assessment and Biohazard Detection -- 12.11.2. Cytotoxicity Studies on Carbon, Metal, Metal Oxide, and Semiconductor-Based Nanoparticles -- 12.12. Summary -- References.
Bibliography Note Includes bibliographical references and index.
Summary Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academia and industry across the natural scientists. Didactically structured and replete with hundreds of illustrations, the textbook is aimed primarily at graduate and advanced-undergraduate students of natural sciences and medicine, and their lecturers.
Note Print version record.
ISBN 9783642105593
3642105599
9783642105586
3642105580
Publisher # 12277681
OCLC # 668095847
Additional Format Print version: Schaefer, H.E. (Hans Eckart), 1936- Nanoscience. Berlin ; London : Springer, 2010 9783642105586 3642105580 (OCoLC)495781755


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team