LEADER 00000cam 2200625Ki 4500
001 668095847
003 OCoLC
005 20181101045543.2
006 m o d
007 cr cn|||||||||
008 101004s2010 gw a ob 001 0 eng d
020 9783642105593
020 3642105599
020 9783642105586
020 3642105580
028 52 12277681
035 (OCoLC)668095847
037 978-3-642-10558-6|bSpringer|nhttp://www.springerlink.com
040 GW5XE|beng|epn|erda|cGW5XE|dCEF|dOCLCQ|dSNK|dOCLCQ|dOCLCF
|dCOO|dA7U|dYDXCP|dOCLCQ|dESU|dIOG|dU3W
049 MAIN
050 4 T174.7|b.S33 2010
082 04 620.5|222
100 1 Schaefer, H. E.|q(Hans Eckart),|d1936-|0http://id.loc.gov/
authorities/names/n81101491
245 10 Nanoscience /|cby Hans-Eckhardt Schaefer.
264 1 Berlin ;|aLondon :|bSpringer,|c2010.
300 1 online resource.
336 text|btxt|2rdacontent
337 computer|bc|2rdamedia
338 online resource|bcr|2rdacarrier
340 |gpolychrome|2rdacc|0http://rdaregistry.info/termList/
RDAColourContent/1003
490 1 Nanoscience and technology
504 Includes bibliographical references and index.
505 00 |gNote continued:|g2.1.2.|tConstant Current Imaging (CCI)
--|g2.1.3.|tConstant-Height Imaging (CHI) --|g2.1.4.
|tSynchrotron Radiation Assisted STM (SRSTM) for Nanoscale
Chemical Imaging --|g2.1.5.|tStudying Bulk Properties and
Volume Atomic Defects by STM --|g2.1.6.|tRadiofrequency
STM --|g2.2.|tAtomic Force Microscopy (AFM) --|g2.2.1.
|tTopographic Imaging by AFM in Contact Mode --|g2.2.2.
|tFrictional Force Microscopy --|g2.2.3.|tNon-contact
force Microscopy --|g2.2.4.|tChemical Identification of
Individual Surface Atoms by AFM --|g2.2.5.|tAFM in
Bionanotechnology --|g2.3.|tScanning Near-Field Optical
Microscopy (SNOM) --|g2.3.1.|tScanning Near-Field Optical
Microscopy (SNOM) --|g2.3.2.|tNear-Field Scanning
Interferometric Apertureless Microscopy (SIAM) --|g2.3.3.
|tMapping Vector Fields in Nanoscale Near-Field Imaging --
|g2.3.4.|tTerahertz Near-Field Nanoscopy of Mobile
Carriers in Semiconductor Nanodevices --|g2.4.|tFar-Field
Optical Microsopy Beyond the Diffraction Limit --|g2.4.1.
|tStimulated Emission Depletion (STED) Optical Microscopy
--|g2.4.2.|tStochastic Optical Reconstruction Microscopy
(2D-STORM) --|g2.4.3.|tThree-Dimensional Far-Field Optical
Nanoimaging of Cells --|g2.4.4.|tVideo-Rate Far-Field
Nanooptical Observation of Synaptic Vesicle Movement --
|g2.5.|tMagnetic Scanning Probe Techniques --|g2.5.1.
|tMagnetic Force Microscopy (MFM) --|g2.5.2.|tSpin-
Polarized Scanning Tunneling Microscopy (SP-STM) --|g2.6.
|tProgress in Electron Microscopy --|g2.6.1.|tAberration-
Corrected Electron Microscopy --|g2.6.2.|tTEM
Nanotomography and Holography --|g2.6.3.|tCryoelectron
Microscopy and Tomography --|g2.7.|tX-Ray Microscopy --
|g2.7.1.|tLens-Based X-Ray Microscopy --|g2.7.2.|tX-Ray
Nanotomography --|g2.7.3.|tLens-Less Coherent X-Ray
Diffraction Imaging --|g2.7.4.|tUpcoming X-Ray Free-
Electron Lasers (XFEL) and Single Biomolecule Imaging --
|g2.8.|tThree-Dimensional Atom Probes (3DAPs) --|g2.9.
|tSummary.
505 00 |gNote continued:|tReferences --|g3.|tSynthesis --|g3.1.
|tNanocrystals and Clusters --|g3.1.1.|tFrom
Supersaturated Vapors --|g3.1.2.|tParticle Synthesis by
Chemical Routes --|g3.1.3.|tSemiconductor Nanocrystals
(Quantum Dots) --|g3.1.4.|tDoping of Nanocrystals --
|g3.1.5.|tMagnetic Nanoparticles --|g3.2.|tSuperlattices
of Nanocrystals in Two (2D) and Three (3D) Dimensions --
|g3.2.1.|tFree-Standing Nanoparticle Superlattice Sheets -
-|g3.2.2.|t3D Superlattices of Binary Nanoparticles --
|g3.3.|tNanowires and Nanofibers --|g3.3.1.|tVapor-Liquid-
Solid (VLS) Growth of Nanowires --|g3.3.2.|tPine Tree
Nanowires with Eshelby Twist --|g3.3.3.|tUltrathin
Nanowires --|g3.3.4.|tElectrospinning of Nanofibers --
|g3.3.5.|tBio-Quantum-Wires --|g3.3.6.|tFormation of
Arsenic Sulfide Nanotubes by the Bacterium Shewanella sp.
Strain HN-41 --|g3.4.|tNanolayers and Multilayered Systems
--|g3.4.1.|tLayered Oxide Heterostructures by Molecular
Beam Epitaxy (MBE) --|g3.4.2.|tAtomic Layer Deposition
(ALD) --|g3.5.|tShape Control of Nanoparticles --|g3.6.
|tNanostructures with Complex Shapes --|g3.7.
|tNanostructures by Ball Milling or Strong Plastic
Deformation --|g3.8.|tCarbon Nanostructures --|g3.8.1.
|tFullerenes --|g3.8.2.|tSingle-Walled Carbon Nanotubes
(SWNTs)- Synthesis and Characterization --|g3.8.3.
|tGraphene --|g3.9.|tNanoporous Materials --|g3.9.1.
|tZeolites and Mesoporous Metal Oxides --|g3.9.2.
|tNanostructured Germanium --|g3.9.3.|tNanoprous Metals --
|g3.9.4.|tSingle Nanopores -- Potentials for DNA
Sequencing --|g3.10.|tLithography --|g3.10.1.|tUV Optical
Lithography --|g3.10.2.|tElectron Beam Lithography --
|g3.10.3.|tProton-Beam Writing --|g3.10.4.|tNanoimprint
Lithography (NIL) --|g3.10.5.|tDip-Pen Nanolithography
(DPN) --|g3.10.6.|tBlock Copolymer Lithography --|g3.10.7.
|tProtein Nanolithography --|g3.10.8.|tFabrication of
Nanostructures in Supercritical Fluids --|g3.10.9.|tTwo-
Photon Lithography for Microfabrication.
505 00 |gNote continued:|g3.11.|tSummary --|tReferences --|g4.
|tNanocrystals -- Nanowires -- Nanolayers --|g4.1.
|tNanocrystals --|g4.1.1.|tSynthesis of Nanocrystals --
|g4.1.2.|tMetal Nanocrystallites -- Structure and
Properties --|g4.1.3.|tSemiconductor Quantum Dots --
|g4.1.4.|tColorful Nanoparticles --|g4.1.5.|tDouble
Quantum Dots for Operating Single-Electron Spins as Qubits
for Quantum Computing --|g4.1.6.|tQuantum Dot Data Storage
Devices --|g4.2.|tNanowires and Metamaterials --|g4.2.1.
|tMetallic Nanowires --|g4.2.2.|tNegative-Index Materials
(Metamaterials) with Nanostructures --|g4.2.3.
|tSemiconductor Nanowires --|g4.2.4.|tMolecular Nanowires
--|g4.2.5.|tConduction Through Individual Rows of Atoms
and Single-Atom Contacts --|g4.3.|tNanolayers and
Multilayers --|g4.3.1.|t2D Quantum Wells --|g4.3.2.|t2D
Quantum Wells in High Magnetic Fields --|g4.3.3.|tIntegral
Quantum Hall Effect (IQHE) --|g4.3.4.|tFractional Quantum
Hall Effect (FQHE) --|g4.3.5.|t2D Electroninc Properties
of Carbon Nanotubes --|g4.3.6.|tMultilayer EUV and X-Ray
Mirrors with High Reflectivity --|g4.4.|tSummary --
|tReferences --|g5.|tCarbon Nanostructures -- Tubes,
Graphene, Fullerenes, Wave-Particle Duality --|g5.1.
|tNanotubes --|g5.1.1.|tSynthesis of Carbon Nanotubes --
|g5.1.2.|tStructure of Carbon Nanotubes --|g5.1.3.
|tElectronic Properties of Carbon Nanotubes --|g5.1.4.
|tHeteronanocontacts Between Carbon Nanotubes and Metals -
-|g5.1.5.|tOptoelectronic Properties of Carbon Nanotubes -
-|g5.1.6.|tThermal Properties of Carbon Nanotubes --
|g5.1.7.|tMechanical Properties of Carbon Nanotubes --
|g5.1.8.|tCarbon Nanotubes as Nanoprobes and Nanotweezers
in Physics, Chemistry, and Biology --|g5.1.9.|tOther
Tubular 1D Carbon Nanostructures --|g5.1.10.|tFilling and
Functionalizing Carbon Nanotubes --|g5.1.11.|tNanotubes
from Materials Other than Pure Carbon --|g5.1.12.
|tApplication of Carbon Nanotubes --|g5.2.|tGraphene.
505 00 |gNote continued:|g5.2.1.|tImaging of Graphene, Defects,
and Atomic Dynamics --|g5.2.2.|tElectronic Structure of
Graphene, Massless Relativistic Dirac Fermions, and
Chirality --|g5.2.3.|tQuantum Hall Effect --|g5.2.4.
|tAnomalous QHE in Bilayer Graphene --|g5.2.5.|tAbsence of
Localization --|g5.2.6.|tFrom Graphene to Graphane --
|g5.2.7.|tGraphene Devices --|g5.3.|tFullerenes, Large
Carbon Molecules, and Hollow Cages of Other Materials --
|g5.3.1.|tFullerenes --|g5.3.2.|tFullerene Compounds --
|g5.3.3.|tSuperheating and Supercooling of Metals
Encapsulated in Fullerene-Like Shells --|g5.3.4.|tLarge
Carbon Molecules --|g5.3.5.|tHollow Cages of Other
Materials --|g5.4.|tFullerenes and the Wave-Particle
Duality --|g5.5.|tSummary --|tReferences --|g6.
|tNanocrystalline Materials --|g6.1.|tMolecular Dynamics
Simulation of the Structure of Grain Boundaries and of the
Plastic Deformation of Nanocrystalline Materials --|g6.2.
|tGrain Boundary Structure --|g6.3.|tPlasticity and Hall-
Petch Behavior of Nanocrystalline Materials --|g6.4.
|tPlasticity Studies by Nanoindentation --|g6.5.
|tUltrastrength Nanomaterials --|g6.6.|tEnhancement of
Both Strength and Ductility --|g6.7.|tSuperplasticity --
|g6.8.|tFatigue --|g6.9.|tNanocomposites --|g6.9.1.
|tMetallic Nanocomposites --|g6.9.2.|tCeramic/Metal
Nanocomposites with Diamond-Like Hardening --|g6.9.3.
|tOxide/Dye/Polymer Nanocomposites-Optical Properties --
|g6.9.4.|tPolymer Nanocomposites --|g6.10.
|tNanocrystalline Ceramics --|g6.10.1.|tLow Thermal
Expansion Nanocrystallite-Glass Ceramics --|g6.11.|tAtomic
Diffusion in Nanocrystalline Materials --|g6.12.|tSurface-
Controlled Actuation and Manipulation of the Properties of
Nanostructures --|g6.12.1.|tCharge-Induced Reversible
Strain in Nanocrystalline Metals --|g6.12.2.|tArtificial
Muscles Made of Carbon Nanotubes --|g6.12.3.|tElectric
Field-Controlled Magnetism in Nanostructured Metals.
505 00 |gNote continued:|g6.12.4.|tSurface Chemistry-Driven
Actuation in Nanoporous Gold --|g6.13.|tSummary --
|tReferences --|g7.|tNanomechanics-Nanophotonics-
Nanofluidics --|g7.1.|tNanoelectromechanical Systems
(NEMS) --|g7.1.1.|tHigh-Frequency Resonators --|g7.1.2.
|tNanoelectromechanical Switches --|g7.2.|tPutting
Mechanics into Quantum Mechanics-Cooling by Laser
Irradiation --|g7.3.|tNanoadhesion: From Geckos to
Materials --|g7.3.1.|tMaterials with Bioinspired Adhesion
--|g7.3.2.|tClimbing Robots and Spiderman Suit --|g7.4.
|tSingle-Photon and Entangled-Photon Sources and Photon
Detectors, Based on Quantum Dots --|g7.4.1.|tSingle-Photon
Sources --|g7.4.2.|tEntangled-Photon Sources --|g7.4.3.
|tSingle-Photon Detection --|g7.5.|tQuantum Dot Lasers --
|g7.6.|tPlasmonics --|g7.6.1.|tPlasmon-Controlled
Synthesis of Metallic Nanoparticles --|g7.6.2.|tExtinction
Behavior of Nanoparticles and Arrays --|g7.6.3.|tPlasmonic
Nanocavities --|g7.6.4.|tSurface-Enhanced Raman
Spectroscopy (SERS) and Fluorescence --|g7.6.5.|tReceiver-
Transmitter Nanoantenna Pairs --|g7.6.6.|tElectro-optical
Nanotraps for Neutral Atoms --|g7.6.7.|tUnifying
Nanophotonics and Nanomechanics --|g7.6.8.|tIntegration of
Optical Manipulation and Nanofluidics --|g7.6.9.|tSingle-
Photon Transistor --|g7.6.10.|tApplication Prospects of
Plasmonics --|g7.7.|t2D-Confinement of Fluids, Wetting,
and Spreading --|g7.7.1.|tPhase Transitions Induced by
Nanoconfinement of Liquid Water --|g7.7.2.|tFluid Flow and
Wetting --|g7.7.3.|tSupeerhydrophobic Surfaces --|g7.7.4.
|tLiquid Spreading Under Nanoscale Confinement --|g7.8.
|tFast Transport of Liquids and Gases Through Carbon
Nanotubes --|g7.8.1.|tLimits of Continuum Hydrodynamics at
the Nanoscale --|g7.8.2.|tWater Transport in CNTs --
|g7.8.3.|tGas Transport in CNTs --|g7.9.|tNanodroplets --
|g7.9.1.|tDynamics of Nanoscopic Water in Micelles --
|g7.9.2.|tNanoscale Double Emulsions.
505 00 |gNote continued:|g7.9.3.|tZeptoliter Liquid Alloy
Droplets and Surface-Induced Crystallization --|g7.9.4.
|tSuperfluid Helium Nanodroplets --|g7.10.|tNanobubbles --
|g7.10.1.|tStable Surface Nanobubbles --|g7.10.2.
|tPolygonal Nanopatterning of Stable Microbubbles --
|g7.10.3.|tBubbles for Tracking the Trajectory of an
Individual Electron Immersed in Liquied Helium --|g7.11.
|tSummary --|tReferences --|g8.|tNanomagnetism --|g8.1.
|tMagnetic Imaging --|g8.1.1.|tMagnetic Force Microscopy
(MFM) and Magnetic Exchange Force Microscopy (MEx FM) --
|g8.1.2.|tSpin-Polarized Scanning Tunneling Microscopy (SP
-STM) and Manipulation --|g8.1.3.|tElectron Microscopy --
|g8.1.4.|tX-Ray Magnetic Circular Dichroism (XMCD) --
|g8.2.|tSize and Dimensionality Effects in Nanomagnetism-
Single Atoms, Clusters (0D), Wires (1D), Films (2D) --
|g8.2.1.|tSingle Atoms --|g8.2.2.|tFinite-Size Atomic
Clusters --|g8.2.3.|tFerromagnetic Nanowires --|g8.2.4.
|tMagnetic Films (2D) --|g8.2.5.|tCurie Temperature Tc in
Dependence of Size, Dimensionality, and Charging --|g8.3.
|tSoft-Magnetic Materials --|g8.4.|tNanostructured Hard
Magnets --|g8.5.|tAntiferromagnetic and Complex Magnetic
Nanostructures --|g8.5.1.|tSpin Structure of
Antiferromagnetic Domain Walls --|g8.5.2.
|tAntiferromagnetic Monatomic Chains --|g8.5.3.
|tAntiferromagnetic Nanoparticles --|g8.5.4.|tComplex
Magnetic Structure of an Iron Monolayer on Ir (111) --
|g8.6.|tFerromagnetic Nanorings --|g8.7.|tCurrent-Induced
Domain Wall Motion in Magnetic Nanostructures --|g8.8.
|tSingle Molecule Magnets --|g8.9.|tMultiferroic
Nanostructures --|g8.10.|tMagnetically Tunable Photonic
Crystals of Superparamagnetic Colloids --|g8.11.
|tNanomagnets in Bacteria --|g8.11.1.|tIn Vivo Doping of
Magnetosomes --|g8.11.2.|tMagnetosomes for Highly
Sensitive Biomarker Detection --|g8.12.|tSummary --
|tReferences --|g9.|tNanotechnology for Computers,
Memories, and Hard Disks --|g9.1.|tTransistors and
Integrated Circuits.
505 00 |gNote continued:|g9.2.|tExtreme Ultraviolet (EUV)
Lithography-The Future Technology of Chip Fabrication --
|g9.3.|tFlash Memory --|g9.4.|tEmerging Solid State Memory
Technologies --|g9.4.1.|tPhase-Change Memory Technology --
|g9.4.2.|tMagnetoresistive Random-Access Memories (MRAM) -
-|g9.4.3.|tFerroelectric Random-Access Memories (FeRAM) --
|g9.4.4.|tResistance Random Access Memories (ReRAMs) --
|g9.4.5.|tCarbon-Nanotube (CNT)-Based Data Storage Devices
(NRAM) --|g9.4.6.|tMagnetic Domain Wall Racetrack Memories
(RM) --|g9.4.7.|tSingle-Molecule Mangnets --|g9.4.8.|t10
Terabit/Inch2 Block Copolymer (BCP) Storage Media --|g9.5.
|tMagnetic Hard Disks and Write/Read Heads --|g9.5.1.
|tExtensions to Hard Disk Magnetic Recording --|g9.5.2.
|tMagnetic Write Head and Read Back Head --|g9.6.|tOptical
Hard Disks --|g9.6.1.|tPrinciples and Materials
Considerations --|g9.6.2.|tMagneto-Optical Recording --
|g9.6.3.|tMultilayer Recording --|g9.6.4.|tHolographic
Data Storage --|g9.7.|tHigh-k Dielectrics for Replacing
SiO2 Insulation in Memory and Logic Devices --|g9.8.|tLow-
k Materials as Interlayer Dielectrics (ILD) --|g9.9.
|tSummary --|tReferences --|g10.|tNanochemistry-From
Supramolecular Chemistry to Chemistry on the Nanoscale,
Catalysis, Renewable Energy, Batteries, and Environmental
Protection --|g10.1.|tSupramolecular Chemistry --|g10.1.1.
|tArchitecture in Supramolecular Chemistry --|g10.1.2.
|tSupramolecular Materials --|g10.1.3.|tMolecular
Recognition, Reactivity, Catalysis, and Transport --
|g10.1.4.|tMolecular Photonics and Electronics --|g10.1.5.
|tMolecular Recognition and Self-Organization --|g10.1.6.
|tDNA Self-Assembled Nanostructures --|g10.1.7.
|tSupramolecular DNA Polyhedra --|g10.2.|tLarge Inorganic
Hollow Clusters --|g10.2.1.|tNano-hedgehogs Shaped from
Molybdenum Oxide Building Blocks --|g10.2.2.|tVesicle-Like
Structures with a Diameter of 90 nm --|g10.2.3.|tNitride-
Phosphate Clathrate.
505 00 |gNote continued:|g10.3.|tChemistry on the Nanoscale --
|g10.3.1.|tNano Test Tubes --|g10.3.2.|tDynamics in Water
Nanodroplets --|g10.3.3.|tTargeted Delivery and Reaction
of Single Molecules --|g10.4.|tCatalysis --|g10.4.1.|tAu
Nanocrystals --|g10.4.2.|tPt Nanocatalysts --|g10.4.3.|tPd
Nanocatalysts --|g10.4.4.|tMoS2 Nanocatalysts as Model
Catalysts for Hydrodesulfurization (HDS) --|g10.4.5.|tIn
Situ Phase Analysis of a Catalyst --|g10.5.|tRenewable
Energy --|g10.6.|tSolar Energy-Photovolataics --|g10.6.1.
|tNitrogen-Doped Nanocrystalline TiO2 Films Sensitized by
CdSe Quantum Dots --|g10.6.2.|tPolymer-Based Solar Cells -
-|g10.6.3.|tSilicon Nanostructures --|g10.7.|tSolar Energy
-Thermal Conversion --|g10.8.|tAntireflection (AR) Coating
--|g10.9.|tConversion of Mechanical Energy into
Electricity --|g10.10.|tHydrogen Storage and Fuel Cells --
|g10.11.|tLithium Ion Batteries and Supercapacitors --
|g10.11.1.|tCarbon Nanotube Cathodes --|g10.11.2.|tTin-
Based Anodes --|g10.11.3.|tLiFePO4 Cathodes --|g10.11.4.
|tSupercapacitors --|g10.12.|tEnvironmental Nanotechnology
--|g10.13.|tSummary --|tReferences --|g11.|tBiology on the
Nanoscale --|g11.1.|tCell-Nanosized Components, Mechanics,
and Diseases --|g11.1.1.|tCell Structure --|g11.1.2.
|tMechanics, Motion, and Deformation of Cells --|g11.1.3.
|tCell Adhesion --|g11.1.4.|tDisease-Induced Alterations
of the Mechanical Properties of Single Living Cells --
|g11.1.5.|tControl of Cell Functions by the Size of
Nanoparticles Alone --|g11.2.|tNanoparticles for
Bioanalysis --|g11.2.1.|tVarious Materials of
Nanoparticles --|g11.2.2.|tSurface Functionalization of
Nanoparticles --|g11.2.3.|tExamples for Labeling
Biosystems by Nanoparticles --|g11.2.4.|tIn Vivo and Deep
Tissue Imaging --|g11.2.5.|tNanoparticle-DNA Interaction -
-|g11.2.6.|tNanoparticle-Protein Interaction --|g11.2.7.
|tBiodistribution of Nanoparticles --|g11.3.
|tNanomechanics of DNA, Proteins, and Cells.
505 00 |gNote continued:|g11.3.1.|tDNA Elasticity --|g11.3.2.
|tFrom Elasticity to Enzymology --|g11.3.3.|tUnzipping of
DNA --|g11.3.4.|tProtein Mechanics --|g11.4.|tMolecular
Motors and Machines --|g11.4.1.|tMyosin --|g11.4.2.
|tKinesin --|g11.4.3.|tMotor-Cargo Linkage and Regulation
--|g11.4.4.|tDiseases --|g11.4.5.|tATP Synthase (ATPase) -
-|g11.5.|tMembrane Channels --|g11.5.1.|tK+ Channel --
|g11.5.2.|tCa2+ Channel --|g11.5.3.|tChloride (C1- )
Channel --|g11.5.4.|tAquaporin Water Channel --|g11.5.5.
|tProtein Channels --|g11.5.6.|tPentameric Ligand-Gated
Ion Channels --|g11.5.7.|tNuclear Pores --|g11.6.
|tBiomimetics --|g11.6.1.|tEnergy Conversion --|g11.6.2.
|tSensing --|g11.6.3.|tSignaling --|g11.6.4.|tMolecular
Motors --|g11.6.5.|tMaterials --|g11.6.6.|tArtificial
Cells-Prospects for Biotechnology --|g11.7.|tBone and
Teeth --|g11.7.1.|tBone --|g11.7.2.|tTooth Structure and
Restoration --|g11.8.|tPhotonic Bionanostructures-Colors
of Butterflies and Beetles --|g11.8.1.|tStructures --
|g11.8.2.|tFormation Processes of Photonic
Bionanostructures --|g11.9.|tLotus Leaf Effect-
Hydrophobicity and Self-Cleaning --|g11.10.|tFood
Nanostructures --|g11.11.|tCosmetics --|g11.11.1.|tSkin
Care --|g11.11.2.|tEncapsulating a Fragrance in
Nanocapsules --|g11.11.3.|tPbS Nanocrystals in Ancient
Hair Dyeing --|g11.12.|tSummary --|tReferences --|g12.
|tNanomedicine --|g12.1.|tIntroduction --|g12.2.
|tDiagnostic Imaging and Molecular Detection Techniques --
|g12.2.1.|tMagnetic Resonance Imaging (MRI) --|g12.2.2.
|tCT Contrast Enhancement --|g12.2.3.|tContrast-Enhanced
Ultrasound Techniques --|g12.2.4.|tPositron Emission
Tomography (PET) --|g12.2.5.|tRaman Spectroscopy Imaging -
-|g12.2.6.|tPhotoacoustic Tomography --|g12.2.7.
|tBiomolecular Detection for Medical Diagnostics --|g12.3.
|tNanoarrays and Nanofluidics for Diagnosis and Therapy --
|g12.3.1.|tLab-on-a-Chip --|g12.3.2.|tMicroarrays and
Nanoarrays.
505 00 |gNote continued:|g12.3.3.|tMicrofluidics and Nanofluidics
--|g12.3.4.|tIntegration of Nanodevices in Medical
Diagnostics --|g12.3.5.|tImplanted Chips --|g12.4.
|tTargeted Drug Delivery by Nanoparticles --|g12.4.1.
|tPorous Silica Nanoparticles for Targeting Cancer Cells -
-|g12.4.2.|tGene Therapy and Drug Delivery for Cancer
Treatment --|g12.4.3.|tLiposomes and Micelles as
Nanocarriers for Diagnosis and Drug Delivery --|g12.4.4.
|tDrug Delivery by Magnetic Nanoparticles --|g12.4.5.
|tNanoshells for Thermal Drug Delivery --|g12.4.6.
|tPhotodynamic Therapy --|g12.5.|tBrain Cancer Diagnosis
and Therapy with Nanoplatforms --|g12.5.1.|tGeneral
Comments --|g12.5.2.|tMRI Contrast Enhancement with
Magnetic Nanoparticles --|g12.5.3.|tNanoparticles for
Chemotherapy --|g12.5.4.|tTargeted Multifunctional
Polyacrylamide (PAA) Nanoparticles for Photodynamic
Therapy (PDT) and Magnetic Resonance Imaging (MRI) --
|g12.6.|tHyperthermia Treatment of Tumors by Using
Targeted Nanoparticles --|g12.6.1.|tAlternating Magnetic
Fields for Heating Magnetic Nanoparticles --|g12.6.2.
|tRadiofrequency Heating of Carbon Nanotubes --|g12.6.3.
|tLight-Induced Heating of Nanoshells --|g12.7.
|tNanoplatforms in Other Diseases and Medical Fields --
|g12.7.1.|tHeart Diseases --|g12.7.2.|tDiabetes --
|g12.7.3.|tLung Therapy-Targeted Delivery of Magnetic
Nanoparticles and Drug Delivery --|g12.7.4.|tAlzheimer's
Disease (AD) --|g12.7.5.|tOphthalmology --|g12.7.6.|tViral
and Bacterial Diseases --|g12.8.|tNanobiomaterials for
Artificial Tissues --|g12.8.1.|tEnhancement of Osteoblast
Function by Carbon Nanotubes on Titanium Implants --
|g12.8.2.|tNanostructured Bioceramics for Bone Restoration
--|g12.8.3.|tFibrous Nanobiomaterials as Bone Tissue
Engineering Scaffolds --|g12.8.4.|tTissue Engineering of
Skin --|g12.8.5.|tAngiogenesis --|g12.8.6.|tPromoting
Neuron Adhesion and Growth --|g12.8.7.|tSpinal Cord In
Vitro Surrogate.
505 00 |gNote continued:|g12.8.8.|tEfforts for Synthesizing
Chromosomes --|g12.9.|tNanosurgery-Present Efforts and
Future Prospects --|g12.9.1.|tFemtosecond Laser Surgery --
|g12.9.2.|tSentinel Lymph Node Surgery Making Use of
Quantum Dots --|g12.9.3.|tProgress Toward Nanoneurosurgery
--|g12.9.4.|tFuture Directions in Neurosurgery --|g12.10.
|tNanodentistry --|g12.10.1.|tNanocomposites in Dental
Restoration --|g12.10.2.|tNanoleakage of Adhesive
Interfaces --|g12.10.3.|tNanostructured Bioceramics for
Maxillofacial Applications --|g12.10.4.|tRelease of Ca-PO4
from Nanocomposites for Remineralization of Tooth Lesions
and Inhibition of Caries --|g12.10.5.|tGrowing Replacement
Bioteeth --|g12.11.|tRisk Assessment Strategies and
Toxicity Considerations --|g12.11.1.|tRisk Assessment and
Biohazard Detection --|g12.11.2.|tCytotoxicity Studies on
Carbon, Metal, Metal Oxide, and Semiconductor-Based
Nanoparticles --|g12.12.|tSummary --|tReferences.
520 Nanoscience stands out for its interdisciplinarity.
Barriers between disciplines disappear and the fields tend
to converge at the very smallest scale, where basic
principles and tools are universal. Novel properties are
inherent to nanosized systems due to quantum effects and a
reduction in dimensionality: nanoscience is likely to
continue to revolutionize many areas of human activity,
such as materials science, nanoelectronics, information
processing, biotechnology and medicine. This textbook
spans all fields of nanoscience, covering its basics and
broad applications. After an introduction to the physical
and chemical principles of nanoscience, coverage moves on
to the adjacent fields of microscopy, nanoanalysis,
synthesis, nanocrystals, nanowires, nanolayers, carbon
nanostructures, bulk nanomaterials, nanomechanics,
nanophotonics, nanofluidics, nanomagnetism, nanotechnology
for computers, nanochemistry, nanobiology, and
nanomedicine. Consequently, this broad yet unified
coverage addresses research in academia and industry
across the natural scientists. Didactically structured and
replete with hundreds of illustrations, the textbook is
aimed primarily at graduate and advanced-undergraduate
students of natural sciences and medicine, and their
lecturers.
588 0 Print version record.
650 0 Nanoscience.|0http://id.loc.gov/authorities/subjects/
sh2002000242
655 4 Electronic books.
776 08 |iPrint version:|aSchaefer, H.E. (Hans Eckart), 1936-
|tNanoscience.|dBerlin ; London : Springer, 2010
|z9783642105586|z3642105580|w(OCoLC)495781755
830 0 Nanoscience and technology.|0http://id.loc.gov/authorities
/names/n97068983
990 SpringerLink|bSpringer English/International eBooks 2010 -
Full Set|c2018-10-31|yNew collection
springerlink.ebooks2010|5OH1