Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.

LEADER 00000cam  2200625Ki 4500 
001    668095847 
003    OCoLC 
005    20181101045543.2 
006    m     o  d         
007    cr cn||||||||| 
008    101004s2010    gw a    ob    001 0 eng d 
020    9783642105593 
020    3642105599 
020    9783642105586 
020    3642105580 
028 52 12277681 
035    (OCoLC)668095847 
037    978-3-642-10558-6|bSpringer|n 
040    GW5XE|beng|epn|erda|cGW5XE|dCEF|dOCLCQ|dSNK|dOCLCQ|dOCLCF
049    MAIN 
050  4 T174.7|b.S33 2010 
082 04 620.5|222 
100 1  Schaefer, H. E.|q(Hans Eckart),|d1936-|0
245 10 Nanoscience /|cby Hans-Eckhardt Schaefer. 
264  1 Berlin ;|aLondon :|bSpringer,|c2010. 
300    1 online resource. 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
340    |gpolychrome|2rdacc|0
490 1  Nanoscience and technology 
504    Includes bibliographical references and index. 
505 00 |gNote continued:|g2.1.2.|tConstant Current Imaging (CCI) 
       --|g2.1.3.|tConstant-Height Imaging (CHI) --|g2.1.4.
       |tSynchrotron Radiation Assisted STM (SRSTM) for Nanoscale
       Chemical Imaging --|g2.1.5.|tStudying Bulk Properties and 
       Volume Atomic Defects by STM --|g2.1.6.|tRadiofrequency 
       STM --|g2.2.|tAtomic Force Microscopy (AFM) --|g2.2.1.
       |tTopographic Imaging by AFM in Contact Mode --|g2.2.2.
       |tFrictional Force Microscopy --|g2.2.3.|tNon-contact 
       force Microscopy --|g2.2.4.|tChemical Identification of 
       Individual Surface Atoms by AFM --|g2.2.5.|tAFM in 
       Bionanotechnology --|g2.3.|tScanning Near-Field Optical 
       Microscopy (SNOM) --|g2.3.1.|tScanning Near-Field Optical 
       Microscopy (SNOM) --|g2.3.2.|tNear-Field Scanning 
       Interferometric Apertureless Microscopy (SIAM) --|g2.3.3.
       |tMapping Vector Fields in Nanoscale Near-Field Imaging --
       |g2.3.4.|tTerahertz Near-Field Nanoscopy of Mobile 
       Carriers in Semiconductor Nanodevices --|g2.4.|tFar-Field 
       Optical Microsopy Beyond the Diffraction Limit --|g2.4.1.
       |tStimulated Emission Depletion (STED) Optical Microscopy 
       --|g2.4.2.|tStochastic Optical Reconstruction Microscopy 
       (2D-STORM) --|g2.4.3.|tThree-Dimensional Far-Field Optical
       Nanoimaging of Cells --|g2.4.4.|tVideo-Rate Far-Field 
       Nanooptical Observation of Synaptic Vesicle Movement --
       |g2.5.|tMagnetic Scanning Probe Techniques --|g2.5.1.
       |tMagnetic Force Microscopy (MFM) --|g2.5.2.|tSpin-
       Polarized Scanning Tunneling Microscopy (SP-STM) --|g2.6.
       |tProgress in Electron Microscopy --|g2.6.1.|tAberration-
       Corrected Electron Microscopy --|g2.6.2.|tTEM 
       Nanotomography and Holography --|g2.6.3.|tCryoelectron 
       Microscopy and Tomography --|g2.7.|tX-Ray Microscopy --
       |g2.7.1.|tLens-Based X-Ray Microscopy --|g2.7.2.|tX-Ray 
       Nanotomography --|g2.7.3.|tLens-Less Coherent X-Ray 
       Diffraction Imaging --|g2.7.4.|tUpcoming X-Ray Free-
       Electron Lasers (XFEL) and Single Biomolecule Imaging --
       |g2.8.|tThree-Dimensional Atom Probes (3DAPs) --|g2.9.
505 00 |gNote continued:|tReferences --|g3.|tSynthesis --|g3.1.
       |tNanocrystals and Clusters --|g3.1.1.|tFrom 
       Supersaturated Vapors --|g3.1.2.|tParticle Synthesis by 
       Chemical Routes --|g3.1.3.|tSemiconductor Nanocrystals 
       (Quantum Dots) --|g3.1.4.|tDoping of Nanocrystals --
       |g3.1.5.|tMagnetic Nanoparticles --|g3.2.|tSuperlattices 
       of Nanocrystals in Two (2D) and Three (3D) Dimensions --
       |g3.2.1.|tFree-Standing Nanoparticle Superlattice Sheets -
       -|g3.2.2.|t3D Superlattices of Binary Nanoparticles --
       |g3.3.|tNanowires and Nanofibers --|g3.3.1.|tVapor-Liquid-
       Solid (VLS) Growth of Nanowires --|g3.3.2.|tPine Tree 
       Nanowires with Eshelby Twist --|g3.3.3.|tUltrathin 
       Nanowires --|g3.3.4.|tElectrospinning of Nanofibers --
       |g3.3.5.|tBio-Quantum-Wires --|g3.3.6.|tFormation of 
       Arsenic Sulfide Nanotubes by the Bacterium Shewanella sp. 
       Strain HN-41 --|g3.4.|tNanolayers and Multilayered Systems
       --|g3.4.1.|tLayered Oxide Heterostructures by Molecular 
       Beam Epitaxy (MBE) --|g3.4.2.|tAtomic Layer Deposition 
       (ALD) --|g3.5.|tShape Control of Nanoparticles --|g3.6.
       |tNanostructures with Complex Shapes --|g3.7.
       |tNanostructures by Ball Milling or Strong Plastic 
       Deformation --|g3.8.|tCarbon Nanostructures --|g3.8.1.
       |tFullerenes --|g3.8.2.|tSingle-Walled Carbon Nanotubes 
       (SWNTs)- Synthesis and Characterization --|g3.8.3.
       |tGraphene --|g3.9.|tNanoporous Materials --|g3.9.1.
       |tZeolites and Mesoporous Metal Oxides --|g3.9.2.
       |tNanostructured Germanium --|g3.9.3.|tNanoprous Metals --
       |g3.9.4.|tSingle Nanopores -- Potentials for DNA 
       Sequencing --|g3.10.|tLithography --|g3.10.1.|tUV Optical 
       Lithography --|g3.10.2.|tElectron Beam Lithography --
       |g3.10.3.|tProton-Beam Writing --|g3.10.4.|tNanoimprint 
       Lithography (NIL) --|g3.10.5.|tDip-Pen Nanolithography 
       (DPN) --|g3.10.6.|tBlock Copolymer Lithography --|g3.10.7.
       |tProtein Nanolithography --|g3.10.8.|tFabrication of 
       Nanostructures in Supercritical Fluids --|g3.10.9.|tTwo-
       Photon Lithography for Microfabrication. 
505 00 |gNote continued:|g3.11.|tSummary --|tReferences --|g4.
       |tNanocrystals -- Nanowires -- Nanolayers --|g4.1.
       |tNanocrystals --|g4.1.1.|tSynthesis of Nanocrystals --
       |g4.1.2.|tMetal Nanocrystallites -- Structure and 
       Properties --|g4.1.3.|tSemiconductor Quantum Dots --
       |g4.1.4.|tColorful Nanoparticles --|g4.1.5.|tDouble 
       Quantum Dots for Operating Single-Electron Spins as Qubits
       for Quantum Computing --|g4.1.6.|tQuantum Dot Data Storage
       Devices --|g4.2.|tNanowires and Metamaterials --|g4.2.1.
       |tMetallic Nanowires --|g4.2.2.|tNegative-Index Materials 
       (Metamaterials) with Nanostructures --|g4.2.3.
       |tSemiconductor Nanowires --|g4.2.4.|tMolecular Nanowires 
       --|g4.2.5.|tConduction Through Individual Rows of Atoms 
       and Single-Atom Contacts --|g4.3.|tNanolayers and 
       Multilayers --|g4.3.1.|t2D Quantum Wells --|g4.3.2.|t2D 
       Quantum Wells in High Magnetic Fields --|g4.3.3.|tIntegral
       Quantum Hall Effect (IQHE) --|g4.3.4.|tFractional Quantum 
       Hall Effect (FQHE) --|g4.3.5.|t2D Electroninc Properties 
       of Carbon Nanotubes --|g4.3.6.|tMultilayer EUV and X-Ray 
       Mirrors with High Reflectivity --|g4.4.|tSummary --
       |tReferences --|g5.|tCarbon Nanostructures -- Tubes, 
       Graphene, Fullerenes, Wave-Particle Duality --|g5.1.
       |tNanotubes --|g5.1.1.|tSynthesis of Carbon Nanotubes --
       |g5.1.2.|tStructure of Carbon Nanotubes --|g5.1.3.
       |tElectronic Properties of Carbon Nanotubes --|g5.1.4.
       |tHeteronanocontacts Between Carbon Nanotubes and Metals -
       -|g5.1.5.|tOptoelectronic Properties of Carbon Nanotubes -
       -|g5.1.6.|tThermal Properties of Carbon Nanotubes --
       |g5.1.7.|tMechanical Properties of Carbon Nanotubes --
       |g5.1.8.|tCarbon Nanotubes as Nanoprobes and Nanotweezers 
       in Physics, Chemistry, and Biology --|g5.1.9.|tOther 
       Tubular 1D Carbon Nanostructures --|g5.1.10.|tFilling and 
       Functionalizing Carbon Nanotubes --|g5.1.11.|tNanotubes 
       from Materials Other than Pure Carbon --|g5.1.12.
       |tApplication of Carbon Nanotubes --|g5.2.|tGraphene. 
505 00 |gNote continued:|g5.2.1.|tImaging of Graphene, Defects, 
       and Atomic Dynamics --|g5.2.2.|tElectronic Structure of 
       Graphene, Massless Relativistic Dirac Fermions, and 
       Chirality --|g5.2.3.|tQuantum Hall Effect --|g5.2.4.
       |tAnomalous QHE in Bilayer Graphene --|g5.2.5.|tAbsence of
       Localization --|g5.2.6.|tFrom Graphene to Graphane --
       |g5.2.7.|tGraphene Devices --|g5.3.|tFullerenes, Large 
       Carbon Molecules, and Hollow Cages of Other Materials --
       |g5.3.1.|tFullerenes --|g5.3.2.|tFullerene Compounds --
       |g5.3.3.|tSuperheating and Supercooling of Metals 
       Encapsulated in Fullerene-Like Shells --|g5.3.4.|tLarge 
       Carbon Molecules --|g5.3.5.|tHollow Cages of Other 
       Materials --|g5.4.|tFullerenes and the Wave-Particle 
       Duality --|g5.5.|tSummary --|tReferences --|g6.
       |tNanocrystalline Materials --|g6.1.|tMolecular Dynamics 
       Simulation of the Structure of Grain Boundaries and of the
       Plastic Deformation of Nanocrystalline Materials --|g6.2.
       |tGrain Boundary Structure --|g6.3.|tPlasticity and Hall-
       Petch Behavior of Nanocrystalline Materials --|g6.4.
       |tPlasticity Studies by Nanoindentation --|g6.5.
       |tUltrastrength Nanomaterials --|g6.6.|tEnhancement of 
       Both Strength and Ductility --|g6.7.|tSuperplasticity --
       |g6.8.|tFatigue --|g6.9.|tNanocomposites --|g6.9.1.
       |tMetallic Nanocomposites --|g6.9.2.|tCeramic/Metal 
       Nanocomposites with Diamond-Like Hardening --|g6.9.3.
       |tOxide/Dye/Polymer Nanocomposites-Optical Properties --
       |g6.9.4.|tPolymer Nanocomposites --|g6.10.
       |tNanocrystalline Ceramics --|g6.10.1.|tLow Thermal 
       Expansion Nanocrystallite-Glass Ceramics --|g6.11.|tAtomic
       Diffusion in Nanocrystalline Materials --|g6.12.|tSurface-
       Controlled Actuation and Manipulation of the Properties of
       Nanostructures --|g6.12.1.|tCharge-Induced Reversible 
       Strain in Nanocrystalline Metals --|g6.12.2.|tArtificial 
       Muscles Made of Carbon Nanotubes --|g6.12.3.|tElectric 
       Field-Controlled Magnetism in Nanostructured Metals. 
505 00 |gNote continued:|g6.12.4.|tSurface Chemistry-Driven 
       Actuation in Nanoporous Gold --|g6.13.|tSummary --
       |tReferences --|g7.|tNanomechanics-Nanophotonics-
       Nanofluidics --|g7.1.|tNanoelectromechanical Systems 
       (NEMS) --|g7.1.1.|tHigh-Frequency Resonators --|g7.1.2.
       |tNanoelectromechanical Switches --|g7.2.|tPutting 
       Mechanics into Quantum Mechanics-Cooling by Laser 
       Irradiation --|g7.3.|tNanoadhesion: From Geckos to 
       Materials --|g7.3.1.|tMaterials with Bioinspired Adhesion 
       --|g7.3.2.|tClimbing Robots and Spiderman Suit --|g7.4.
       |tSingle-Photon and Entangled-Photon Sources and Photon 
       Detectors, Based on Quantum Dots --|g7.4.1.|tSingle-Photon
       Sources --|g7.4.2.|tEntangled-Photon Sources --|g7.4.3.
       |tSingle-Photon Detection --|g7.5.|tQuantum Dot Lasers --
       |g7.6.|tPlasmonics --|g7.6.1.|tPlasmon-Controlled 
       Synthesis of Metallic Nanoparticles --|g7.6.2.|tExtinction
       Behavior of Nanoparticles and Arrays --|g7.6.3.|tPlasmonic
       Nanocavities --|g7.6.4.|tSurface-Enhanced Raman 
       Spectroscopy (SERS) and Fluorescence --|g7.6.5.|tReceiver-
       Transmitter Nanoantenna Pairs --|g7.6.6.|tElectro-optical 
       Nanotraps for Neutral Atoms --|g7.6.7.|tUnifying 
       Nanophotonics and Nanomechanics --|g7.6.8.|tIntegration of
       Optical Manipulation and Nanofluidics --|g7.6.9.|tSingle-
       Photon Transistor --|g7.6.10.|tApplication Prospects of 
       Plasmonics --|g7.7.|t2D-Confinement of Fluids, Wetting, 
       and Spreading --|g7.7.1.|tPhase Transitions Induced by 
       Nanoconfinement of Liquid Water --|g7.7.2.|tFluid Flow and
       Wetting --|g7.7.3.|tSupeerhydrophobic Surfaces --|g7.7.4.
       |tLiquid Spreading Under Nanoscale Confinement --|g7.8.
       |tFast Transport of Liquids and Gases Through Carbon 
       Nanotubes --|g7.8.1.|tLimits of Continuum Hydrodynamics at
       the Nanoscale --|g7.8.2.|tWater Transport in CNTs --
       |g7.8.3.|tGas Transport in CNTs --|g7.9.|tNanodroplets --
       |g7.9.1.|tDynamics of Nanoscopic Water in Micelles --
       |g7.9.2.|tNanoscale Double Emulsions. 
505 00 |gNote continued:|g7.9.3.|tZeptoliter Liquid Alloy 
       Droplets and Surface-Induced Crystallization --|g7.9.4.
       |tSuperfluid Helium Nanodroplets --|g7.10.|tNanobubbles --
       |g7.10.1.|tStable Surface Nanobubbles --|g7.10.2.
       |tPolygonal Nanopatterning of Stable Microbubbles --
       |g7.10.3.|tBubbles for Tracking the Trajectory of an 
       Individual Electron Immersed in Liquied Helium --|g7.11.
       |tSummary --|tReferences --|g8.|tNanomagnetism --|g8.1.
       |tMagnetic Imaging --|g8.1.1.|tMagnetic Force Microscopy 
       (MFM) and Magnetic Exchange Force Microscopy (MEx FM) --
       |g8.1.2.|tSpin-Polarized Scanning Tunneling Microscopy (SP
       -STM) and Manipulation --|g8.1.3.|tElectron Microscopy --
       |g8.1.4.|tX-Ray Magnetic Circular Dichroism (XMCD) --
       |g8.2.|tSize and Dimensionality Effects in Nanomagnetism-
       Single Atoms, Clusters (0D), Wires (1D), Films (2D) --
       |g8.2.1.|tSingle Atoms --|g8.2.2.|tFinite-Size Atomic 
       Clusters --|g8.2.3.|tFerromagnetic Nanowires --|g8.2.4.
       |tMagnetic Films (2D) --|g8.2.5.|tCurie Temperature Tc in 
       Dependence of Size, Dimensionality, and Charging --|g8.3.
       |tSoft-Magnetic Materials --|g8.4.|tNanostructured Hard 
       Magnets --|g8.5.|tAntiferromagnetic and Complex Magnetic 
       Nanostructures --|g8.5.1.|tSpin Structure of 
       Antiferromagnetic Domain Walls --|g8.5.2.
       |tAntiferromagnetic Monatomic Chains --|g8.5.3.
       |tAntiferromagnetic Nanoparticles --|g8.5.4.|tComplex 
       Magnetic Structure of an Iron Monolayer on Ir (111) --
       |g8.6.|tFerromagnetic Nanorings --|g8.7.|tCurrent-Induced 
       Domain Wall Motion in Magnetic Nanostructures --|g8.8.
       |tSingle Molecule Magnets --|g8.9.|tMultiferroic 
       Nanostructures --|g8.10.|tMagnetically Tunable Photonic 
       Crystals of Superparamagnetic Colloids --|g8.11.
       |tNanomagnets in Bacteria --|g8.11.1.|tIn Vivo Doping of 
       Magnetosomes --|g8.11.2.|tMagnetosomes for Highly 
       Sensitive Biomarker Detection --|g8.12.|tSummary --
       |tReferences --|g9.|tNanotechnology for Computers, 
       Memories, and Hard Disks --|g9.1.|tTransistors and 
       Integrated Circuits. 
505 00 |gNote continued:|g9.2.|tExtreme Ultraviolet (EUV) 
       Lithography-The Future Technology of Chip Fabrication --
       |g9.3.|tFlash Memory --|g9.4.|tEmerging Solid State Memory
       Technologies --|g9.4.1.|tPhase-Change Memory Technology --
       |g9.4.2.|tMagnetoresistive Random-Access Memories (MRAM) -
       -|g9.4.3.|tFerroelectric Random-Access Memories (FeRAM) --
       |g9.4.4.|tResistance Random Access Memories (ReRAMs) --
       |g9.4.5.|tCarbon-Nanotube (CNT)-Based Data Storage Devices
       (NRAM) --|g9.4.6.|tMagnetic Domain Wall Racetrack Memories
       (RM) --|g9.4.7.|tSingle-Molecule Mangnets --|g9.4.8.|t10 
       Terabit/Inch2 Block Copolymer (BCP) Storage Media --|g9.5.
       |tMagnetic Hard Disks and Write/Read Heads --|g9.5.1.
       |tExtensions to Hard Disk Magnetic Recording --|g9.5.2.
       |tMagnetic Write Head and Read Back Head --|g9.6.|tOptical
       Hard Disks --|g9.6.1.|tPrinciples and Materials 
       Considerations --|g9.6.2.|tMagneto-Optical Recording --
       |g9.6.3.|tMultilayer Recording --|g9.6.4.|tHolographic 
       Data Storage --|g9.7.|tHigh-k Dielectrics for Replacing 
       SiO2 Insulation in Memory and Logic Devices --|g9.8.|tLow-
       k Materials as Interlayer Dielectrics (ILD) --|g9.9.
       |tSummary --|tReferences --|g10.|tNanochemistry-From 
       Supramolecular Chemistry to Chemistry on the Nanoscale, 
       Catalysis, Renewable Energy, Batteries, and Environmental 
       Protection --|g10.1.|tSupramolecular Chemistry --|g10.1.1.
       |tArchitecture in Supramolecular Chemistry --|g10.1.2.
       |tSupramolecular Materials --|g10.1.3.|tMolecular 
       Recognition, Reactivity, Catalysis, and Transport --
       |g10.1.4.|tMolecular Photonics and Electronics --|g10.1.5.
       |tMolecular Recognition and Self-Organization --|g10.1.6.
       |tDNA Self-Assembled Nanostructures --|g10.1.7.
       |tSupramolecular DNA Polyhedra --|g10.2.|tLarge Inorganic 
       Hollow Clusters --|g10.2.1.|tNano-hedgehogs Shaped from 
       Molybdenum Oxide Building Blocks --|g10.2.2.|tVesicle-Like
       Structures with a Diameter of 90 nm --|g10.2.3.|tNitride-
       Phosphate Clathrate. 
505 00 |gNote continued:|g10.3.|tChemistry on the Nanoscale --
       |g10.3.1.|tNano Test Tubes --|g10.3.2.|tDynamics in Water 
       Nanodroplets --|g10.3.3.|tTargeted Delivery and Reaction 
       of Single Molecules --|g10.4.|tCatalysis --|g10.4.1.|tAu 
       Nanocrystals --|g10.4.2.|tPt Nanocatalysts --|g10.4.3.|tPd
       Nanocatalysts --|g10.4.4.|tMoS2 Nanocatalysts as Model 
       Catalysts for Hydrodesulfurization (HDS) --|g10.4.5.|tIn 
       Situ Phase Analysis of a Catalyst --|g10.5.|tRenewable 
       Energy --|g10.6.|tSolar Energy-Photovolataics --|g10.6.1.
       |tNitrogen-Doped Nanocrystalline TiO2 Films Sensitized by 
       CdSe Quantum Dots --|g10.6.2.|tPolymer-Based Solar Cells -
       -|g10.6.3.|tSilicon Nanostructures --|g10.7.|tSolar Energy
       -Thermal Conversion --|g10.8.|tAntireflection (AR) Coating
       --|g10.9.|tConversion of Mechanical Energy into 
       Electricity --|g10.10.|tHydrogen Storage and Fuel Cells --
       |g10.11.|tLithium Ion Batteries and Supercapacitors --
       |g10.11.1.|tCarbon Nanotube Cathodes --|g10.11.2.|tTin-
       Based Anodes --|g10.11.3.|tLiFePO4 Cathodes --|g10.11.4.
       |tSupercapacitors --|g10.12.|tEnvironmental Nanotechnology
       --|g10.13.|tSummary --|tReferences --|g11.|tBiology on the
       Nanoscale --|g11.1.|tCell-Nanosized Components, Mechanics,
       and Diseases --|g11.1.1.|tCell Structure --|g11.1.2.
       |tMechanics, Motion, and Deformation of Cells --|g11.1.3.
       |tCell Adhesion --|g11.1.4.|tDisease-Induced Alterations 
       of the Mechanical Properties of Single Living Cells --
       |g11.1.5.|tControl of Cell Functions by the Size of 
       Nanoparticles Alone --|g11.2.|tNanoparticles for 
       Bioanalysis --|g11.2.1.|tVarious Materials of 
       Nanoparticles --|g11.2.2.|tSurface Functionalization of 
       Nanoparticles --|g11.2.3.|tExamples for Labeling 
       Biosystems by Nanoparticles --|g11.2.4.|tIn Vivo and Deep 
       Tissue Imaging --|g11.2.5.|tNanoparticle-DNA Interaction -
       -|g11.2.6.|tNanoparticle-Protein Interaction --|g11.2.7.
       |tBiodistribution of Nanoparticles --|g11.3.
       |tNanomechanics of DNA, Proteins, and Cells. 
505 00 |gNote continued:|g11.3.1.|tDNA Elasticity --|g11.3.2.
       |tFrom Elasticity to Enzymology --|g11.3.3.|tUnzipping of 
       DNA --|g11.3.4.|tProtein Mechanics --|g11.4.|tMolecular 
       Motors and Machines --|g11.4.1.|tMyosin --|g11.4.2.
       |tKinesin --|g11.4.3.|tMotor-Cargo Linkage and Regulation 
       --|g11.4.4.|tDiseases --|g11.4.5.|tATP Synthase (ATPase) -
       -|g11.5.|tMembrane Channels --|g11.5.1.|tK+ Channel --
       |g11.5.2.|tCa2+ Channel --|g11.5.3.|tChloride (C1- ) 
       Channel --|g11.5.4.|tAquaporin Water Channel --|g11.5.5.
       |tProtein Channels --|g11.5.6.|tPentameric Ligand-Gated 
       Ion Channels --|g11.5.7.|tNuclear Pores --|g11.6.
       |tBiomimetics --|g11.6.1.|tEnergy Conversion --|g11.6.2.
       |tSensing --|g11.6.3.|tSignaling --|g11.6.4.|tMolecular 
       Motors --|g11.6.5.|tMaterials --|g11.6.6.|tArtificial 
       Cells-Prospects for Biotechnology --|g11.7.|tBone and 
       Teeth --|g11.7.1.|tBone --|g11.7.2.|tTooth Structure and 
       Restoration --|g11.8.|tPhotonic Bionanostructures-Colors 
       of Butterflies and Beetles --|g11.8.1.|tStructures --
       |g11.8.2.|tFormation Processes of Photonic 
       Bionanostructures --|g11.9.|tLotus Leaf Effect-
       Hydrophobicity and Self-Cleaning --|g11.10.|tFood 
       Nanostructures --|g11.11.|tCosmetics --|g11.11.1.|tSkin 
       Care --|g11.11.2.|tEncapsulating a Fragrance in 
       Nanocapsules --|g11.11.3.|tPbS Nanocrystals in Ancient 
       Hair Dyeing --|g11.12.|tSummary --|tReferences --|g12.
       |tNanomedicine --|g12.1.|tIntroduction --|g12.2.
       |tDiagnostic Imaging and Molecular Detection Techniques --
       |g12.2.1.|tMagnetic Resonance Imaging (MRI) --|g12.2.2.
       |tCT Contrast Enhancement --|g12.2.3.|tContrast-Enhanced 
       Ultrasound Techniques --|g12.2.4.|tPositron Emission 
       Tomography (PET) --|g12.2.5.|tRaman Spectroscopy Imaging -
       -|g12.2.6.|tPhotoacoustic Tomography --|g12.2.7.
       |tBiomolecular Detection for Medical Diagnostics --|g12.3.
       |tNanoarrays and Nanofluidics for Diagnosis and Therapy --
       |g12.3.1.|tLab-on-a-Chip --|g12.3.2.|tMicroarrays and 
505 00 |gNote continued:|g12.3.3.|tMicrofluidics and Nanofluidics
       --|g12.3.4.|tIntegration of Nanodevices in Medical 
       Diagnostics --|g12.3.5.|tImplanted Chips --|g12.4.
       |tTargeted Drug Delivery by Nanoparticles --|g12.4.1.
       |tPorous Silica Nanoparticles for Targeting Cancer Cells -
       -|g12.4.2.|tGene Therapy and Drug Delivery for Cancer 
       Treatment --|g12.4.3.|tLiposomes and Micelles as 
       Nanocarriers for Diagnosis and Drug Delivery --|g12.4.4.
       |tDrug Delivery by Magnetic Nanoparticles --|g12.4.5.
       |tNanoshells for Thermal Drug Delivery --|g12.4.6.
       |tPhotodynamic Therapy --|g12.5.|tBrain Cancer Diagnosis 
       and Therapy with Nanoplatforms --|g12.5.1.|tGeneral 
       Comments --|g12.5.2.|tMRI Contrast Enhancement with 
       Magnetic Nanoparticles --|g12.5.3.|tNanoparticles for 
       Chemotherapy --|g12.5.4.|tTargeted Multifunctional 
       Polyacrylamide (PAA) Nanoparticles for Photodynamic 
       Therapy (PDT) and Magnetic Resonance Imaging (MRI) --
       |g12.6.|tHyperthermia Treatment of Tumors by Using 
       Targeted Nanoparticles --|g12.6.1.|tAlternating Magnetic 
       Fields for Heating Magnetic Nanoparticles --|g12.6.2.
       |tRadiofrequency Heating of Carbon Nanotubes --|g12.6.3.
       |tLight-Induced Heating of Nanoshells --|g12.7.
       |tNanoplatforms in Other Diseases and Medical Fields --
       |g12.7.1.|tHeart Diseases --|g12.7.2.|tDiabetes --
       |g12.7.3.|tLung Therapy-Targeted Delivery of Magnetic 
       Nanoparticles and Drug Delivery --|g12.7.4.|tAlzheimer's 
       Disease (AD) --|g12.7.5.|tOphthalmology --|g12.7.6.|tViral
       and Bacterial Diseases --|g12.8.|tNanobiomaterials for 
       Artificial Tissues --|g12.8.1.|tEnhancement of Osteoblast 
       Function by Carbon Nanotubes on Titanium Implants --
       |g12.8.2.|tNanostructured Bioceramics for Bone Restoration
       --|g12.8.3.|tFibrous Nanobiomaterials as Bone Tissue 
       Engineering Scaffolds --|g12.8.4.|tTissue Engineering of 
       Skin --|g12.8.5.|tAngiogenesis --|g12.8.6.|tPromoting 
       Neuron Adhesion and Growth --|g12.8.7.|tSpinal Cord In 
       Vitro Surrogate. 
505 00 |gNote continued:|g12.8.8.|tEfforts for Synthesizing 
       Chromosomes --|g12.9.|tNanosurgery-Present Efforts and 
       Future Prospects --|g12.9.1.|tFemtosecond Laser Surgery --
       |g12.9.2.|tSentinel Lymph Node Surgery Making Use of 
       Quantum Dots --|g12.9.3.|tProgress Toward Nanoneurosurgery
       --|g12.9.4.|tFuture Directions in Neurosurgery --|g12.10.
       |tNanodentistry --|g12.10.1.|tNanocomposites in Dental 
       Restoration --|g12.10.2.|tNanoleakage of Adhesive 
       Interfaces --|g12.10.3.|tNanostructured Bioceramics for 
       Maxillofacial Applications --|g12.10.4.|tRelease of Ca-PO4
       from Nanocomposites for Remineralization of Tooth Lesions 
       and Inhibition of Caries --|g12.10.5.|tGrowing Replacement
       Bioteeth --|g12.11.|tRisk Assessment Strategies and 
       Toxicity Considerations --|g12.11.1.|tRisk Assessment and 
       Biohazard Detection --|g12.11.2.|tCytotoxicity Studies on 
       Carbon, Metal, Metal Oxide, and Semiconductor-Based 
       Nanoparticles --|g12.12.|tSummary --|tReferences. 
520    Nanoscience stands out for its interdisciplinarity. 
       Barriers between disciplines disappear and the fields tend
       to converge at the very smallest scale, where basic 
       principles and tools are universal. Novel properties are 
       inherent to nanosized systems due to quantum effects and a
       reduction in dimensionality: nanoscience is likely to 
       continue to revolutionize many areas of human activity, 
       such as materials science, nanoelectronics, information 
       processing, biotechnology and medicine. This textbook 
       spans all fields of nanoscience, covering its basics and 
       broad applications. After an introduction to the physical 
       and chemical principles of nanoscience, coverage moves on 
       to the adjacent fields of microscopy, nanoanalysis, 
       synthesis, nanocrystals, nanowires, nanolayers, carbon 
       nanostructures, bulk nanomaterials, nanomechanics, 
       nanophotonics, nanofluidics, nanomagnetism, nanotechnology
       for computers, nanochemistry, nanobiology, and 
       nanomedicine. Consequently, this broad yet unified 
       coverage addresses research in academia and industry 
       across the natural scientists. Didactically structured and
       replete with hundreds of illustrations, the textbook is 
       aimed primarily at graduate and advanced-undergraduate 
       students of natural sciences and medicine, and their 
588 0  Print version record. 
650  0 Nanoscience.|0
655  4 Electronic books. 
776 08 |iPrint version:|aSchaefer, H.E. (Hans Eckart), 1936-
       |tNanoscience.|dBerlin ; London : Springer, 2010
830  0 Nanoscience and technology.|0
990    SpringerLink|bSpringer English/International eBooks 2010 -
       Full Set|c2018-10-31|yNew collection 
View online

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team