Return to home page
Searching: Muskingum library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Title Electrical insulation for rotating machines : design, evaluation, aging, testing, and repair / Greg C. Stone, Ian Culbert, Edward A. Boulter, Hussein Dhirani.
Imprint Hoboken, New Jersey : Wiley, [2014]
Edition Second edition.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK WILEY EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK WILEY EBOOKS    ONLINE  
View online
Series IEEE Press Series on Power Engineering ; 8
IEEE Press series on power engineering ; 8.
Subject Electric insulators and insulation.
Electric machinery -- Windings.
Electric motors.
Electric machinery -- Protection.
Alt Name Stone, Greg C.,
Culbert, Ian,
Boulter, Edward A.,
Dhirani, Hussein,
Description 1 online resource.
Edition Second edition.
Bibliography Note Includes bibliographical references and index.
Note Print version record and CIP data provided by publisher.
Contents Machine generated contents note: 1.1. Types of Rotating Machines -- 1.1.1. AC Motors -- 1.1.2. Synchronous Generators -- 1.1.3. Induction Generators -- 1.1.4. Permanent Magnet (PM) Synchronous Motors and Generators -- 1.1.5. Classification by Cooling -- 1.2. Winding Components -- 1.2.1. Stator Winding -- 1.2.2. Insulated Rotor Windings -- 1.2.3. Squirrel Cage Induction Motor Rotor Windings -- 1.3. Types of Stator Winding Construction -- 1.3.1. Random-Wound Stators -- 1.3.2. Form-Wound Stators[--]Coil Type -- 1.3.3. Form-Wound Stators[--]Roebel Bar Type -- 1.4. Form-Wound Stator Winding Insulation System Features -- 1.4.1. Strand Insulation -- 1.4.2. Turn Insulation -- 1.4.3. Groundwall Insulation -- 1.4.4. Groundwall Partial Discharge Suppression -- 1.4.5. Groundwall Stress Relief Coatings for Conventional Stators -- 1.4.6. Surface Stress Relief Coatings for Inverter-Fed Stators -- 1.4.7. Conductor Shields -- 1.4.8. Mechanical Support in the Slot -- 1.4.9. Mechanical Support in the End winding -- 1.4.10. Transposition Insulation -- 1.5. Random-Wound Stator Winding Insulation System Features -- 1.5.1. Partial Discharge Suppression in Inverter-Fed Random Windings -- 1.6. Rotor Winding Insulation System Components -- 1.6.1. Salient Pole Rotor -- 1.6.2. Round Rotors -- 1.6.3. Induction Machine Wound Rotors -- References -- 2.1. Aging Stresses -- 2.1.1. Thermal Stress -- 2.1.2. Electrical Stress -- 2.1.3. Ambient Stress (Factors) -- 2.1.4. Mechanical Stress -- 2.1.5. Radiation Stress -- 2.1.6. Multiple Stresses -- 2.2. Principles of Accelerated Aging Tests -- 2.2.1. Candidate and Reference Materials/Systems -- 2.2.2. Statistical Variation -- 2.2.3. Failure Indicators -- 2.3. Thermal Endurance Tests -- 2.3.1. Basic Principles -- 2.3.2. Thermal Identification and Classification -- 2.3.3. Insulating Material Thermal Aging Test Standards -- 2.3.4. Insulation System Thermal Aging Test Standards -- 2.3.5. Future Trends -- 2.4. Electrical Endurance Tests -- 2.4.1. Proprietary Tests for Form-Wound Coils -- 2.4.2. Standardized AC Voltage Endurance Test Methods for Form-Wound Coils/Bars -- 2.4.3. Voltage Endurance Tests for Inverter-Fed Windings -- 2.5. Thermal Cycling Tests -- 2.5.1. IEEE Thermal Cycling Test -- 2.5.2. IEC Thermal Cycling Test -- 2.6. Nuclear Environmental Qualification Tests -- 2.6.1. Environmental Qualification (EQ) by Testing -- 2.6.2. Environmental Qualification by Analysis -- 2.6.3. Environmental Qualification by a Combination of Testing and Analysis -- 2.7. Multifactor Stress Testing -- 2.8. Material Property Tests -- References -- 3.1. Natural Materials for Form-Wound Stator Coils -- 3.2. Early Synthetics for Form-Wound Stator Coils -- 3.3. Plastic Films and Non-Wovens -- 3.4. Liquid Synthetic Resins -- 3.4.1. Polyesters -- 3.4.2. Epoxides (Epoxy Resins) -- 3.5. Mica -- 3.5.1. Mica Splittings -- 3.5.2. Mica Paper -- 3.5.3. Mica Backing Materials -- 3.6. Glass Fibers -- 3.7. Laminates -- 3.8. Evolution of Wire and Strand Insulations -- 3.9. Manufacture of Random-Wound Stator Coils -- 3.10. Manufacture of Form-Wound Coils and Bars -- 3.10.1. Early Systems -- 3.10.2. Asphaltic Mica Systems -- 3.10.3. Individual Coil and Bar Thermoset Systems -- 3.10.4. Global VPI Systems -- 3.11. Wire Transposition Insulation -- 3.12. Methods of Taping Stator Groundwall Insulation -- 3.13. Insulating Liners, Separators, and Sleeving -- 3.13.1. Random-Wound Stators -- 3.13.2. Rotors -- References -- 4.1. Consolidation of Major Manufacturers -- 4.2. Description of Major Trademarked Form-Wound Stator Insulation Systems -- 4.2.1. Westinghouse Electric Co.: Thermalastic["! -- 4.2.2. General Electric: Micapals I and II["!, Epoxy Mica Mat["!, Micapal HT["!, and Hydromat["! -- 4.2.3. Alsthom, GEC Alsthom, and Alstom Power: Isotenax["!, Resitherm["!, Resiflex["!, Resivac["!, and Duritenax["! -- 4.2.4. Siemens AG, KWU: Micalastic["! -- 4.2.5. Brown Boveri, ASEA, ABB, and Alstom Power: Micadur["!, Micadur Compact["!, Micapac["!, and Micarex["! -- 4.2.6. Toshiba Corporation: Tosrich["! and Tostight["! -- 4.2.7. Mitsubishi Electric Corporation -- 4.2.8. Hitachi, Ltd.: Hi-Resin["!, Hi-Mold["!, and Super Hi-Resin["! -- 4.2.9. Dongfang Electric Machinery -- 4.2.10. Harbin Electric Corporation (HEC) -- 4.2.11. Shanghai Electric Machinery -- 4.2.12. Jinan Power Equipment: Resitherm["!, Micadur["!, and Micadur Compact["! -- 4.2.13. Summary of Present-Day Insulation Systems -- 4.3. Recent Developments for Form-Wound Insulation Systems -- 4.3.1. Reducing Groundwall Thermal Impedance -- 4.3.2. Increasing Electric Stress -- 4.3.3. Environmental Issues -- 4.4. Random-Wound Stator Insulation Systems -- 4.4.1. Magnet Wire Insulation -- 4.4.2. Phase and Ground Insulation -- 4.4.3. Varnish Treatment and Impregnation -- References -- 5.1. Rotor Slot and Turn Insulation -- 5.2. Collector Insulation -- 5.3. End Winding Insulation and Blocking -- 5.4. Retaining Ring Insulation -- 5.5. Direct-Cooled Rotor Insulation -- 5.6. Wound Rotors -- 5.7. Superconducting Sychronous Rotors -- References -- 6.1. Magnetic Materials -- 6.1.1. Magnetic Fields -- 6.1.2. Ferromagnetism -- 6.1.3. Magnetization Saturation Curve -- 6.1.4. Ferromagnetic Materials -- 6.1.5. Permeability -- 6.1.6. Hysteresis Loss -- 6.1.7. Eddy Current Loss -- 6.1.8. Other Factors Affecting Core Loss -- 6.1.9. Effect of Direction of the Grain -- 6.1.10. Effect of Temperature -- 6.1.11. Effect of Heat Treatment -- 6.1.12. Effect of Impurities and Alloying Elements -- 6.1.13. Silicon/Aluminum Steels -- 6.2. Mill-Applied Insulation -- 6.3. Lamination Punching and Laser Cutting -- 6.4. Annealing and Burr Removal -- 6.5. Enameling or Film Coatings -- 6.6. Stator and Rotor Core Construction -- 6.6.1. Stator Core Construction: General -- 6.6.2. Hydrogenerator and Large Motor Stator Core Assembly and Support -- 6.6.3. Turbogenerator Stator Core Assembly and Support -- 6.6.4. Smaller Motor and Generator Stator Cores -- 6.6.5. Rotor Core Construction -- References -- 7.1. Failure Processes -- 7.1.1. Relative Failure Rates of Components -- 7.1.2. Factors Affecting Failure Mechanism Predominance -- 7.2. Factors Affecting Repair Decisions -- 7.3. Rapid Repair of Localized Stator Winding Damage -- 7.4. Cutting out Stator Coils After Failure -- 7.5. Bar/Coil Replacement and Half Coil Splice -- 7.6. Rewinding -- References -- 8.1. Thermal Deterioration -- 8.1.1. General Process -- 8.1.2. Root Causes -- 8.1.3. Symptoms -- 8.1.4. Remedies -- 8.2. Thermal Cycling -- 8.2.1. General Process -- 8.2.2. Root Causes -- 8.2.3. Symptoms -- 8.2.4. Remedies -- 8.3. Inadequate Resin Impregnation or Dipping -- 8.3.1. General Process -- 8.3.2. Root Causes -- 8.3.3. Symptoms -- 8.3.4. Remedies -- 8.4. Loose Coils in the Slot -- 8.4.1. General Process -- 8.4.2. Root Causes -- 8.4.3. Symptoms -- 8.4.4. Remedies -- 8.5. Semiconductive Coating Failure -- 8.5.1. General Process -- 8.5.2. Root Causes -- 8.5.3. Symptoms -- 8.5.4. Remedies -- 8.6. Semiconductive/Grading Coating Overlap Failure -- 8.6.1. General Process -- 8.6.2. Root Causes -- 8.6.3. Symptoms -- 8.6.4. Remedies -- 8.7. High Intensity Slot Discharge -- 8.7.1. General Process -- 8.7.2. Root Causes -- 8.7.3. Symptoms -- 8.7.4. Repairs -- 8.8. Vibration Sparking (Spark Erosion) -- 8.8.1. General Process -- 8.8.2. Root Cause -- 8.8.3. Symptoms -- 8.8.4. Repair -- 8.9. Transient Voltage Surges -- 8.9.1. General Process -- 8.9.2. Root Causes -- 8.9.3. Symptoms -- 8.9.4. Remedies -- 8.10. Repetitive Voltage Surges Due to Drives -- 8.10.1. General Process -- 8.10.2. Root Cause -- 8.10.3. Symptoms -- 8.10.4. Remedies -- 8.11. Contamination (Electrical Tracking) -- 8.11.1. General Process -- 8.11.2. Root Causes -- 8.11.3. Symptoms -- 8.11.4. Remedies -- 8.12. Abrasive Particles -- 8.12.1. General Process -- 8.12.2. Root Causes -- 8.12.3. Symptoms and Remedies -- 8.13. Chemical Attack -- 8.13.1. General Process -- 8.13.2. Root Causes -- 8.13.3. Symptoms -- 8.13.4. Remedies -- 8.14. Inadequate End Winding Spacing -- 8.14.1. General Process -- 8.14.2. Root Causes -- 8.14.3. Symptoms -- 8.14.4. Remedies -- 8.15. End Winding Vibration -- 8.15.1. General Process -- 8.15.2. Root Causes -- 8.15.3. Symptoms -- 8.15.4. Remedies -- 8.16. Stator Coolant Water Leaks -- 8.16.1. General Process -- 8.16.2. Root Causes -- 8.16.3. Symptoms -- 8.16.4. Remedies -- 8.17. Poor Electrical Connections -- 8.17.1. General Process -- 8.17.2. Root Causes -- 8.17.3. Symptoms -- 8.17.4. Remedies -- References -- 9.1. Thermal Deterioration -- 9.1.1. General Process -- 9.1.2. Root Cause -- 9.1.3. Symptoms -- 9.2. Thermal Cycling -- 9.2.1. General Process -- 9.2.2. Root Cause -- 9.2.3. Symptoms -- 9.3. Abrasion Due to Imbalance or Turning Gear Operation (Copper Dusting) -- 9.3.1. General Process -- 9.3.2. Root Causes -- 9.3.3. Symptoms -- 9.4. Pollution (Tracking) -- 9.4.1. General Process -- 9.4.2. Root Causes -- 9.4.3. Common Symptoms -- 9.5. Repetitive Voltage Surges -- 9.5.1. General Process -- 9.5.2. Root Causes -- 9.5.3. Common Symptoms -- 9.6. Centrifugal Force.
Note continued: 9.6.1. General Process -- 9.6.2. Root Causes -- 9.6.3. Common Symptoms -- 9.7. Operating Without Field Current -- 9.7.1. Loss of Field During Operation -- 9.7.2. Inadvertent Closure of Generator Breaker -- 9.7.3. Root Causes -- 9.7.4. Common Symptoms -- 9.8. Remedies -- References -- 10.1. Thermal Deterioration -- 10.1.1. General Process -- 10.1.2. Root Causes -- 10.1.3. Common Symptoms -- 10.2. Thermal Cycling -- 10.2.1. General Process -- 10.2.2. Root Causes -- 10.2.3. Common Symptoms -- 10.3. Pollution (Tracking and Moisture Absorption) -- 10.3.1. General Process -- 10.3.2. Root Causes -- 10.3.3. Common Symptoms -- 10.4. Abrasive Particles -- 10.4.1. General Process -- 10.4.2. Root Causes -- 10.4.3. Common Symptom -- 10.5. Centrifugal Force -- 10.5.1. General Process -- 10.5.2. Root Causes -- 10.5.3. Common Symptoms -- 10.6. Repetitive Voltage Surges -- 10.6.1. General Process -- 10.6.2. Root Causes -- 10.6.3. Common Symptoms -- 10.7. Salient Pole Repair -- References -- 11.1. Voltage Surges -- 11.1.1. General Process -- 11.1.2. Root Causes -- 11.1.3. Common Symptoms -- 11.2. Unbalanced Stator Voltages -- 11.2.1. General Process -- 11.2.2. Root Causes -- 11.2.3. Common Symptoms -- 11.3. High Resistance Connections-Bar Lap and Wave Windings -- 11.3.1. General Process -- 11.3.2. Root Causes -- 11.3.3. Common Symptoms -- 11.4. End Winding Banding Failures -- 11.4.1. General Process -- 11.4.2. Root Causes -- 11.4.3. Common Symptoms -- 11.5. Slip Ring Insulation Shorting and Grounding -- 11.5.1. General Process -- 11.5.2. Root Causes -- 11.6. Wound Rotor Winding Repair -- 11.6.1. Failed Windings -- 11.6.2. Contaminated Windings and Slip Ring Insulation -- 11.6.3. Failed Connections in Bar-Type Windings -- 11.6.4. Damaged End Winding Banding -- 11.6.5. Failed or Contaminated Slip Ring Insulation -- References -- 12.1. Thermal -- 12.1.1. General Process -- 12.1.2. Root Causes -- 12.1.3. Common Symptoms -- 12.2. Cyclic Mechanical Stressing -- 12.2.1. General Process -- 12.2.2. Root Causes -- 12.2.3. Common Symptoms -- 12.3. Poor Design/Manufacture -- 12.3.1. General Process and Root Causes -- 12.3.2. Common Symptoms -- 12.4. Repairs -- References -- 13.1. Thermal Deterioration -- 13.1.1. General Process -- 13.1.2. Root Causes -- 13.1.3. Common Symptoms -- 13.2. Electrical Degradation -- 13.2.1. General Process -- 13.2.2. Root Causes -- 13.2.3. Common Symptoms -- 13.3. Mechanical Degradation -- 13.3.1. General Process -- 13.3.2. Root Causes -- 13.3.3. Symptoms -- 13.4. Failures Due to Manufacturing Defects -- 13.4.1. General Process -- 13.4.2. Root Causes -- 13.4.3. Symptoms -- 13.5. Core Repairs -- 13.5.1. Loose Cores -- 13.5.2. Core Insulation Shorting -- 13.5.3. Core Damage Due to Winding Electrical Faults -- 13.5.4. False Tooth -- 13.5.5. Cracked Through-Bolt Insulation -- 13.5.6. Split Core Repairs -- References -- 14.1. Purpose of Testing and Monitoring -- 14.1.1. Assessing Winding Condition and Remaining Winding Life -- 14.1.2. Prioritizing Maintenance -- 14.1.3. Commissioning and Warranty Testing -- 14.1.4. Determining Root Cause of Failure -- 14.2. Off-Line Testing Versus On-Line Monitoring -- 14.3. Role of Visual Inspections -- 14.4. Expert Systems to Convert Data Into Information -- References -- 15.1. Insulation Resistance and Polarization Index -- 15.1.1. Purpose and Theory -- 15.1.2. Test Method -- 15.1.3. Interpretation -- 15.2. DC Hipot Test -- 15.2.1. Purpose and Theory -- 15.2.2. Test Method -- 15.2.3. Interpretation -- 15.3. Polarization/Depolarization Current (PDC) -- 15.3.1. Purpose and Theory -- 15.3.2. Test Method -- 15.3.3. Interpretation -- 15.4. DC Conductivity -- 15.4.1. Purpose and Theory -- 15.4.2. Test Method -- 15.4.3. Interpretation -- 15.5. Poor Connection Hot Spot (High Current-Infrared Camera) -- 15.5.1. Purpose and Theory -- 15.5.2. Test Method -- 15.5.3. Interpretation -- 15.6. AC Hipot -- 15.6.1. Purpose and Theory -- 15.6.2. Test Method -- 15.6.3. Interpretation -- 15.7. Capacitance -- 15.7.1. Purpose and Theory -- 15.7.2. Test Method -- 15.7.3. Interpretation -- 15.8. Stator Capacitance Tip-Up -- 15.8.1. Purpose and Theory -- 15.8.2. Test Method -- 15.8.3. Interpretation -- 15.9. Capacitive Impedance Test for Motor Stators -- 15.10. Dissipation (or Power) Factor -- 15.10.1. Purpose and Theory -- 15.10.2. Test Method -- 15.10.3. Interpretation -- 15.11. Power (Dissipation) Factor Tip-Up -- 15.11.1. Purpose and Theory -- 15.11.2. Test Method -- 15.11.3. Interpretation -- 15.12. Off-Line Partial Discharge for Conventional Windings -- 15.12.1. Purpose and Theory -- 15.12.2. Test Method -- 15.12.3. Interpretation -- 15.13. Off-Line Partial Discharge for Inverter-Fed Windings -- 15.13.1. Purpose and Theory -- 15.13.2. Test Method and Interpretation -- 15.14. Stator Blackout and Ultraviolet Imaging -- 15.14.1. Purpose and Theory -- 15.14.2. Test Method -- 15.14.3. Interpretation -- 15.15. Stator Partial Discharge Probe -- 15.15.1. Purpose and Theory -- 15.15.2. Test Method -- 15.15.3. Interpretation -- 15.16. Stator Surge Voltage -- 15.16.1. Purpose and Theory -- 15.16.2. Test Method -- 15.16.3. Interpretation -- 15.17. Inductive Impedance -- 15.18. Semiconductive Coating Contact Resistance -- 15.18.1. Purpose and Theory -- 15.18.2. Test Method -- 15.18.3. Interpretation -- 15.19. Conductor Coolant Tube Resistance -- 15.19.1. Purpose and Test Method -- 15.20. Stator Wedge Tap -- 15.20.1. Purpose and Theory -- 15.20.2. Test Method -- 15.20.3. Interpretation -- 15.21. Slot Side Clearance -- 15.21.1. Purpose and Theory -- 15.21.2. Test Method -- 15.21.3. Interpretation -- 15.22. Stator Slot Radial Clearance -- 15.22.1. Purpose and Theory -- 15.22.2. Test Method -- 15.22.3. Interpretation -- 15.23. Stator End Winding Bump -- 15.23.1. Purpose and Theory -- 15.23.2. Test Method -- 15.23.3. Interpretation -- 15.24. Stator Pressure and Vacuum Decay -- 15.24.1. Purpose and Theory -- 15.24.2. Test Methods and Interpretation -- 15.25. Rotor Pole Drop (Voltage Drop) -- 15.25.1. Purpose and Theory -- 15.25.2. Test Method[--]Salient Pole Rotor -- 15.25.3. Test Method[--]Round Rotors -- 15.25.4. Interpretation -- 15.26. Rotor RSO and Surge -- 15.26.1. Purpose and Theory -- 15.26.2. Test Method -- 15.26.3. Interpretation -- 15.27. Rotor Growler -- 15.27.1. Purpose and Theory -- 15.27.2. Test Method -- 15.27.3. Interpretation -- 15.28. Rotor Fluorescent Dye Penetrant -- 15.28.1. Purpose and Theory -- 15.28.2. Test Method and Interpretation -- 15.29. Rotor Rated Flux -- 15.29.1. Purpose and Theory -- 15.29.2. Test Method -- 15.29.3. Interpretation -- 15.30. Rotor Single-Phase Rotation -- 15.30.1. Purpose and Theory -- 15.30.2. Test Method -- 15.30.3. Interpretation -- References -- 16.1. Thermal Monitoring -- 16.1.1. Stator Winding Point Sensors -- 16.1.2. Rotor Winding Sensors -- 16.1.3. Data Acquisition and Interpretation -- 16.1.4. Thermography -- 16.2. Condition Monitors and Tagging Compounds -- 16.2.1. Monitoring Principles -- 16.2.2. Interpretation -- 16.3. Ozone -- 16.3.1. Monitoring Principles -- 16.3.2. Interpretation -- 16.4. Online Partial Discharge Monitor -- 16.4.1. Monitoring Principles -- 16.4.2. Interpretation -- 16.5. Online Capacitance and Dissipation Factor -- 16.5.1. Monitoring Principle -- 16.5.2. Data Acquisition and Interpretation -- 16.6. Endwinding Vibration Monitor -- 16.6.1. Monitoring Principles -- 16.6.2. Data Acquisition and Interpretation -- 16.7. Synchronous Rotor Flux Monitor -- 16.7.1. Monitoring Principles -- 16.7.2. Data Acquisition and Interpretation -- 16.8. Current Signature Analysis -- 16.8.1. Monitoring Principles -- 16.8.2. Data Acquisition -- 16.8.3. Interpretation -- 16.9. Bearing Vibration Monitor -- 16.9.1. Vibration Sensors -- 16.9.2. Induction Motor Monitoring -- 16.9.3. Synchronous Machine Monitoring -- 16.10. Stator Winding Water Leak Monitoring -- References -- 17.1. Knife -- 17.1.1. Purpose and Theory -- 17.1.2. Test Method -- 17.1.3. Interpretation -- 17.2. Rated Flux -- 17.2.1. Purpose and Theory -- 17.2.2. Test Method -- 17.2.3. Interpretation -- 17.3. Core Loss -- 17.3.1. Purpose and Theory -- 17.3.2. Test Method -- 17.3.3. Interpretation -- 17.4. Low Core Flux (El-CID) -- 17.4.1. Purpose and Theory -- 17.4.2. Test Method -- 17.4.3. Interpretation -- References -- 18.1. Objective of Stator and Rotor Winding Specifications -- 18.2. Trade-Offs Between Detailed and General Specifications -- 18.3. General Items for Specifications -- 18.4. Technical Requirements for New Stator Windings -- 18.5. Technical Requirements for Insulated Rotor Windings -- 18.5.1. New Round Rotor Windings -- 18.5.2. Refurbishment and Replacement of Existing Round Rotor Windings -- 18.5.3. New Salient Pole Windings -- 18.5.4. Refurbishment and Repair of Existing Salient Pole Windings -- References -- 19.1. Stator Winding Insulation System Prequalification Tests -- 19.1.1. Dissipation Factor Tip-Up -- 19.1.2. Partial Discharge Test for Conventional Windings -- 19.1.3. Partial Discharge Test for Inverter Fed Windings -- 19.1.4. Impulse (Surge) -- 19.1.5. Voltage Endurance for Conventional Windings.
Note continued: 19.1.6. Voltage Endurance for Form-Wound Inverter Fed Windings -- 19.1.7. Thermal Cycling -- 19.1.8. Thermal Classification -- 19.2. Stator Winding Insulation System Factory and On-Site Tests -- 19.2.1. Insulation Resistance and Polarization Index -- 19.2.2. Phase Resistance and/or Thermal Imaging -- 19.2.3. AC and DC Hipot -- 19.2.4. Impulse (Surge) -- 19.2.5. Strand-to-Strand -- 19.2.6. Power Factor Tip-Up -- 19.2.7. Partial Discharge -- 19.2.8. Semiconductive Coating Test -- 19.2.9. Wedge Tap -- 19.2.10. Endwinding Bump -- 19.3. Factory and On-Site Tests for Rotor Windings -- 19.3.1. Tests Applicable to All Insulated Windings -- 19.3.2. Round Rotor Synchronous Machine Windings -- 19.3.3. Salient Pole Synchronous Machine Windings -- 19.3.4. Wound Induction Rotor Windings -- 19.3.5. Squirrel Cage Rotor Windings -- 19.4. Core Insulation Factory and On-Site Tests -- 19.4.1. Core Tightness -- 19.4.2. Rated Flux -- 19.4.3. Low Flux (El-CID) -- References -- 20.1. Maintenance and Inspection Options -- 20.1.1. Breakdown or Corrective Maintenance -- 20.1.2. Time-Based or Preventative Maintenance -- 20.1.3. Condition-Based or Predictive Maintenance -- 20.1.4. Inspections -- 20.2. Maintenance Strategies for Various Machine Types and Applications -- 20.2.1. Turbogenerators -- 20.2.2. Salient Pole Generators and Motors -- 20.2.3. Squirrel Cage and Wound-Rotor Induction Motors -- Reference.
Summary The last ten years have seen a relentless drive to reduce the cost of motors and generators. Responding to this need, this revised and updated edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in all motors and generators greater than fractional horsepower size. The coverage offers machine users and designers a historical overview of machine insulation design before discussing insulation for new machines. It then lays out 30 different rotor and stator winding failure processes and their solutions and 25 tests for assessing winding in.
ISBN 9781118892299 (ePub)
1118892291 (ePub)
9781118892404 (Adobe PDF)
1118892402 (Adobe PDF)
9781118886663
1118886666
1118057066
9781118057063
9781118057063 (cloth ; alk. paper)
OCLC # 881387997
Additional Format Print version: Electrical insulation for rotating machines. Second edition. Hoboken, New Jersey : John Wiley & Sons Inc., [2014] 9781118057063 (DLC) 2014021677


If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team