Return to home page
Searching: Muskingum library catalog
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Author Collinson, R. P. G.
Title Introduction to avionics systems / by R.P.G. Collinson.
Imprint Dordrecht ; New York : Springer, 2011.
Edition Third edition.

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Subject Avionics.
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online
Subject Avionics.
Description 1 online resource (xvi, 530 pages) : illustrations
Edition Third edition.
Bibliography Note Includes bibliographical references and index.
Contents Machine generated contents note: 1. Introduction -- 1.1. Importance and Role of Avionics -- 1.1.1. Systems Which Interface Directly with the Pilot -- 1.1.2. Aircraft State Sensor Systems -- 1.1.3. Navigation Systems -- 1.1.4. Outside World Sensor Systems -- 1.1.5. Task Automation Systems -- 1.2. Avionic Environment -- 1.2.1. Minimum Weight -- 1.2.2. Environmental Requirements -- 1.2.3. Reliability -- 1.3. Choice of Units -- 2. Displays and Man-Machine Interaction -- 2.1. Introduction -- 2.2. Head Up Displays -- 2.2.1. Introduction -- 2.2.2. Basic Principles -- 2.2.3. Holographic HUDs -- 2.2.4. HUD Electronics -- 2.2.5. Worked Example on HUD Design and Display Generation -- 2.2.6. Civil Aircraft HUDs -- 2.3. Helmet Mounted Displays -- 2.3.1. Introduction -- 2.3.2. Helmet Design Factors -- 2.3.3. Helmet Mounted Sights -- 2.3.4. Helmet Mounted Displays -- 2.3.5. Head Tracking Systems -- 2.3.6. HMDs and the Virtual Cockpit -- 2.4. Computer Aided Optical Design -- 2.4.1. Introduction -- 2.5. Discussion of HUDs versus HMDs -- 2.5.1. Introduction -- 2.5.2. Military Aircraft HUDs and HMDs -- 2.6. Head Down Displays -- 2.6.1. Introduction -- 2.6.2. Civil Cockpit Head Down Displays -- 2.6.3. Military Head Down Displays -- 2.6.4. Display Symbology Generation -- 2.6.5. Digitally Generated Moving Colour Map Displays -- 2.6.6. Solid State Standby Display Instruments -- 2.7. Data Fusion -- 2.8. Intelligent Displays Management -- 2.9. Displays Technology -- 2.9.1. Replacing the HUD CRT -- 2.9.2. HMD/HUD Optical System Technology -- 2.9.3. Q Sight HMD -- 2.9.4. Q HUD -- 2.10. Control and Data Entry -- 2.10.1. Introduction -- 2.10.2. Tactile Control Panels -- 2.10.3. Direct Voice Input -- 2.10.4. Speech Output Systems -- 2.10.5. Display Integration with Audio/Tactile Inputs -- 2.10.6. Eye Trackers -- 3. Aerodynamics and Aircraft Control -- 3.1. Introduction -- 3.2. Basic Aerodynamics -- 3.2.1. Lift and Drag -- 3.2.2. Angle of Incidence/Angle of Attack -- 3.2.3. LiTl Coefficient and Drag Coefficient -- 3.2.4. Illustrative Example on Basic Aerodynamics -- 3.2.5. Pitching Moment and Aerodynamic Centre -- 3.2.6. Tailplane Contribution -- 3.3. Aircraft Stability -- 3.3.1. Longitudinal Stability -- 3.3.2. Aerodynamically Unstable Aircraft -- 3.3.3. Body Lift Contributions -- 3.4. Aircraft Dynamics -- 3.4.1. Aircraft Axes -- Velocity and Acceleration Components -- 3.4.2. Euler Angles -- Definition of Angles of Pitch, Bank and Yaw -- 3.4.3. Equations of Motion for Small Disturbances -- 3.4.4. Aerodynamic Force and Moment Derivatives -- 3.4.5. Equations of Longitudinal and Lateral Motion -- 3.5. Longitudinal Control and Response -- 3.5.1. Longitudinal Control -- 3.5.2. Stick Forcc/g -- 3.5.3. Pitch Rate Response to Tail plane/Elevator Angle -- 3.5.4. Pitch Response Assuming Constant Forward Speed -- 3.5.5. Worked Example on q/n Transfer Function and Pitch Response -- 3.6. Lateral Control -- 3.6.1. Aileron Control and Bank to Turn -- 3.6.2. Rudder Control -- 3.6.3. Short Period Yawing Motion -- 3.6.4. Combined Roll-Yaw-Sideslip Motion -- 3.7. Powered Flying Controls -- 3.7.1. Introduction -- 3.7.2. PCU Transfer Functions -- 3.8. Stability Augmentation Systems -- 3.8.1. Limited Authority Stability Augmentation Systems -- 3.8.2. Full Authority Stability Augmentation Systems -- 3.9. Helicopter Flight Contro -- 3.9.1. Introduction -- 3.9.2. Control of the Helicopter in Flight -- 3.9.3. Stability Augmentation -- 4. Fly-by-Wire Flight Control -- 4.1. Introduction -- 4.2. FBW Flight Control Features and Advantages -- 4.2.1. FBW System Basic Concepts and Features -- 4.2.2. Advantages of FBW Control -- 4.3. Control Laws -- 4.3.1. Pitch Rate Command Control -- 4.3.2. Lags in the Control Loop -- 4.3.3. Roll Rate Command Control -- 4.3.4. Handling Qualities and PIOs -- 4.3.5. Modern Control Theory -- 4.4. Redundancy and Failure Survival -- 4.4.1. Safety and Integrity -- 4.4.2. Redundant Configurations -- 4.4.3. Voting and Consolidation -- 4.4.4. Quadruplex System Architecture -- 4.4.5. Common Mode Failures -- 4.4.6. Dissimilar Redundancy -- 4.5. Digital Implementation -- 4.5.1. Advantages of Digital Implementation -- 4.5.2. Digital Data Problems -- 4.5.3. Software -- 4.5.4. Failure Modes and Effects Analysis -- 4.6. Helicopter FBW Flight Control Systems -- 4.7. Active FBW Inceptors -- 4.8. Fly-by-Light Flight Control -- 4.8.1. Introduction -- 4.8.2. Fly-by-Light Flight Control Systems -- 4.8.3. Optical Sensors -- 5. Inertial Sensors and Attitude Derivation -- 5.1. Introduction -- 5.2. Gyros and Accelerometers -- 5.2.1. Introduction -- 5.2.2. Micro Electro-Mechanical Systems (MEMS) Technology Rate Gyros -- 5.2.3. Optical Gyroscopes -- 5.2.4. Accelerometers -- 5.2.5. Skewed Axes Sensor Configurations -- 5.3. Attitude Derivation -- 5.3.1. Introduction -- 5.3.2. Strap-Down Systems -- 5.3.3. Coning Motion -- 5.3.4. Attitude with Respect to Local North, East, Down Axes -- 5.3.5. Vehicle Rate Corrections -- 5.3.6. Introduction to Complementary Filtering -- 6. Navigation Systems -- 6.1. Introduction and Basic Principles -- 6.1.1. Introduction -- 6.1.2. Basic Navigation Definitions -- 6.1.3. Basic DR Navigation Systems -- 6.2. Inertial Navigation -- 6.2.1. Introduction -- 6.2.2. Basic Principles and Schuler Tuning -- 6.2.3. Platform Axes -- 6.2.4. Initial Alignment and Gyro Compassing -- 6.2.5. Effect of Azimuth Gyro Drift -- 6.2.6. Vertical Navigation Channel -- 6.2.7. Choice of Navigation Co-ordinates -- 6.2.8. Strap-down IN System Computing -- 6.3. Aided IN Systems and Kalman Filters -- 6.4. Altitude Heading Reference Systems -- 6.4.1. Introduction -- 6.4.2. Azimuth Monitoring Using a Magnetic Heading Reference -- 6.5. GPS -- Global Positioning System -- 6.5.1. Introduction -- 6.5.2. GPS System Description -- 6.5.3. Basic Principles of GPS -- 6.5.4. Solution of Navigation Equations -- 6.5.5. Integration of GPS and INS -- 6.5.6. Differential GPS -- 6.5.7. Future Augmented Satellite Navigation Systems -- 6.6. Terrain Reference Navigation -- 6.6.1. Introduction -- 6.6.2. Terrain Contour Navigation -- 6.6.3. Terrain Characteristic Matching -- 6.6.4. Civil Exploitation of TRN -- 7. Air Data and Air Data Systems -- 7.1. Introduction -- 7.2. Air Data Information and Its Use -- 7.2.1. Air Data Measurement -- 7.2.2. Air Data Quantities and Their Importance -- 7.3. Derivation of Air Data Laws and Relationships -- 7.3.1. Altitude-Static Pressure Relationship -- 7.3.2. Variation of Ground Pressure -- 7.3.3. Air Density versus Altitude Relationship -- 7.3.4. Speed of Sound -- 7.3.5. Pressure-Speed Relationships -- 7.3.6. Mach Number -- 7.3.7. Calibrated Airspeed -- 7.3.8. Static Air Temperature -- 7.3.9. True Airspeed -- 7.3.10. Pressure Error -- 7.4. Air Data Sensors and Computing -- 7.4.1. Introduction -- 7.4.2. Air Data System Pressure Sensors -- 7.4.3. Air Data Computation -- 7.4.4. Angle of Incidence Sensors -- 8. Autopilots and Flight Management Systems -- 8.1. Introduction -- 8.2. Autopilots -- 8.2.1. Basic Principles -- 8.2.2. Height Control -- 8.2.3. Heading Control Autopilot -- 8.2.4. ILS/MLS Coupled Autopilot Control -- 8.2.5. Automatic Landing -- 8.2.6. Satellite Landing Guidance Systems -- 8.2.7. Speed Control and Auto-Throtllc Systems -- 8.3. Flight Management Systems -- 8.3.1. Introduction -- 8.3.2. Radio Navigation Tuning -- 8.3.3. Navigation -- 8.3.4. Flight Planning -- 8.3.5. Performance Prediction and Flight Path Optimisation -- 8.3.6. Control of the Vertical Flight Path Profile -- 8.3.7. Operational Modes -- 8.3.8. 4D Flight Management -- 9. Avionics Systems.
Integration -- 9.1. Introduction and Background -- 9.2. Data Bus Systems -- 9.2.1. Electrical Data Bus Systems -- 9.2.2. Optical Data Bus Systems -- 9.2.3. Parallel Data Buses -- 9.3. Integrated Modular Avionics Architectures -- 9.3.1. Civil Integrated Modular Avionic Systems -- 9.4. Commercial Off-the-Shelf (COTS) -- 10. Unmanned Air Vehicles -- 10.1. Importance of Unmanned Air Vehicles -- 10.2. UAV Avionics -- 10.3. Brief Overview of Some Current UAVs/UCAVs.
Summary "Introduction to Avionic Systems, Third Edition" explains the basic principles and underlying theory of the core avionic systems in modern civil and military aircraft, comprising the pilot's head-up and head-down displays, data entry and control systems, fly by wire flight control systems, inertial sensor and air data systems, navigation systems, autopilots and flight management systems. The implementation and integration of these systems with current (2010) technology is explained together with the methods adopted to meet the very high safety and integrity requirements. The systems.
Note Print version record.
ISBN 9789400707085 (electronic bk.)
9400707088 (electronic bk.)
9789400707078
ISBN/ISSN 10.1007/978-94-007-0708-5
OCLC # 745004771
Additional Format Print version: Collinson, R.P.G. Introduction to avionics systems. 3rd ed. Dordrecht : Springer, 2011 (DLC) 2011931528