Return to home page
Searching: Otterbein library catalog
In response to the COVID-19 outbreak, statewide lending via OhioLINK and SearchOhio has been suspended. OPAL member libraries have closed or are operating at reduced service levels. Please contact your library with specific lending requests or if you need assistance.

LEADER 00000cam  2200625 i 4500 
001    852958602 
003    OCoLC 
005    20170812120838.3 
006    m     o  d         
007    cr ||||||||||| 
008    130715s2014    enk     ob    001 0 eng   
010    2013028437 
019    868967134|a961599859|a962573716 
020    9781118676738 (ePub) 
020    1118676734 (ePub) 
020    9781118676783 (Adobe PDF) 
020    1118676785 (Adobe PDF) 
020    |z9781119994008 (cloth) 
020    9781118676646 
020    1118676645 
020    1119994004 (cloth) 
020    9781119994008 (cloth) 
035    (OCoLC)852958602|z(OCoLC)868967134|z(OCoLC)961599859
040    DLC|beng|erda|cDLC|dYDX|dN$T|dDG1|dCUS|dYDXCP|dCDX|dOCLCF
042    pcc 
049    MTUM 
050 00 TP248.65.P62 
072  7 TEC|x009010|2bisacsh 
082 00 668.4|223 
245 00 Bio-based plastics :|bmaterials and applications /|ceditor
       Stephan Kabasci. 
264  1 Chichester, West Sussex, United Kingdom :|bJohn Wiley & 
       Sons Inc.,|c2014. 
300    1 online resource. 
336    text|2rdacontent 
337    computer|2rdamedia 
338    online resource|2rdacarrier 
347    text file|2rdaft|0
490 1  Wiley series in renewable resources. 
504    Includes bibliographical references and index. 
505 00 |gMachine generated contents note:|g1.|tBio-Based Plastics
       -- Introduction /|rStephan Kabasci --|g1.1.|tDefinition of
       Bio-Based Plastics --|g1.2.|tA Brief History of Bio-Based 
       Plastics --|g1.3.|tMarket for Bio-Based Plastics --|g1.4.
       |tScope of the Book --|g2.|tStarch /|rSebastia Gesti 
       Garcia --|g2.1.|tIntroduction --|g2.2.|tStarch --|g2.3.
       |tStarch-Filled Plastics --|g2.4.|tStructural Starch 
       Modifications --|g2.4.1.|tStarch Gelatinization and 
       Retrogradation --|g2.4.2.|tStarch Jet-Cooking --|g2.4.3.
       |tStarch Extrusion Cooking --|g2.4.4.|tStarch 
       Destructurization in Absence of Synthetic Polymers --
       |g2.4.5.|tStarch Destructurization in Presence of 
       Synthetic Polymers --|g2.4.6.|tAdditional Information on 
       Starch Complexation --|g2.5.|tStarch-Based Materials on 
       the Market --|g2.6.|tConclusions --|tReferences --|g3.
       |tCellulose and Cellulose Acetate /|rHans-Peter Fink --
       |g3.1.|tIntroduction --|g3.2.|tRaw Materials --|g3.3.
       |tStructure --|g3.3.1.|tCellulose --|g3.3.2.|tCellulose 
       Derivatives --|g3.4.|tPrinciples of Cellulose Technology
       |g3.4.1.|tRegenerated Cellulose --|g3.4.2.|tOrganic 
       Cellulose Esters -- Cellulose Acetate --|g3.5.|tProperties
       and Applications of Cellulose-Based Plastics --|g3.5.1.
       |tFibres --|g3.5.2.|tFilms --|g3.5.3.|tMoulded Articles --
       |g3.6.|tSome Recent Developments --|g3.6.1.|tCellulose --
       |g3.6.2.|tCellulose Acetate and Mixed Esters --|g3.7.
       |tConclusion --|tReferences --|g4.|tMaterials Based on 
       Chitin and Chitosan /|rMarguerite Rinaudo --|g4.1.
       |tIntroduction --|g4.2.|tPreparation and Characterization 
       of Chitin and Chitosan --|g4.2.1.|tChitin: Characteristics
       and Characterization --|g4.2.2.|tChitosan: Preparation and
       Characterization --|g4.3.|tProcessing of Chitin to 
       Materials and Applications --|g4.3.1.|tProcessing of 
       Chitin and Physical Properties of Materials --|g4.3.2.
       |tApplications of Chitin-Based Materials --|g4.4.
       |tChitosan Processing to Materials and Applications --
       |g4.4.1.|tProcessing of Chitosan --|g4.4.2.|tApplication 
       of Chitosan-Based Materials --|g4.5.|tConclusion --
       |tReferences --|g5.|tLignin Matrix Composites from Natural
       Resources -- ARBOFORM® /|rNorbert Eisenreich|g5.1.
       |tIntroduction --|g5.2.|tApproaches for Plastics 
       Completely Made from Natural Resources --|g5.3.
       |tFormulation of Lignin Matrix Composites (ARBOFORM) --
       |g5.3.1.|tLignin --|g5.3.2.|tBasic Formulations and 
       Processing of ARBOFORM --|g5.3.3.|tThe Influence of the 
       Fibre Content --|g5.4.|tChemical Free Lignin from High 
       Pressure Thermo-Hydrolysis (Aquasolv) --|g5.4.1.|tNear 
       Infrared Spectroscopy of Lignin Types --|g5.4.2.|tLignin 
       Extraction by High-Pressure Hydrothermolysis (HPH) --
       |g5.4.3.|tThermoplastic Processing of Aquasolv Lignin --
       |g5.5.|tFunctionalizing Lignin Matrix Composites --
       |g5.5.1.|tImpact Strength --|g5.5.2.|tFlame Retardancy --
       |g5.5.3.|tElectrical Conductivity with Nanoparticles --
       |g5.5.4.|tPyrolysis to Porous Carbonaceous Structures --
       |g5.6.|tInjection Moulding of Parts -- Case Studies --
       |g5.6.1.|tLoudspeaker Boxes --|g5.6.2.|tPrecision Parts --
       |g5.6.3.|tThin Walled and Decorative Gift Boxes and Toys -
       -|tAcknowledgements --|tReferences --|g6.|tBioplastics 
       from Lipids /|rStuart Coles --|g6.1.|tIntroduction --
       |g6.2.|tDefinition and Structure of Lipids|g6.2.1.|tFatty 
       Acids --|g6.2.2.|tMono-, Di- and Tri-Substituted Glycerols
       --|g6.2.3.|tPhospholipids --|g6.2.4.|tOther Compounds --
       |g6.3.|tSources and Biosynthesis of Lipids --|g6.3.1.
       |tSources of Lipids --|g6.3.2.|tBiosynthesis of Lipids --
       |g6.3.3.|tComposition of Triglycerides --|g6.4.
       |tExtraction of Plant Oils, Triglycerides and Their 
       Associated Compounds --|g6.4.1.|tSeed Cleaning and 
       Preparation --|g6.4.2.|tSeed Pressing --|g6.4.3.|tLiquid 
       Extraction --|g6.4.4.|tPost Extraction Processing --|g6.5.
       |tBiopolymers from Plant Oils, Triglycerides and Their 
       Associated Compounds --|g6.5.1.|tGeneric Triglycerides --
       |g6.5.2.|tCommon Manipulations of Triglycerides --|g6.5.3.
       |tSoybean Oil-Based Bioplastics --|g6.5.4.|tCastor Oil-
       Based Bioplastics --|g6.5.5.|tLinseed Oil-Based 
       Bioplastics --|g6.5.6.|tOther Plant Oil-Based Bioplastics 
       --|g6.5.7.|tBiological Synthesis of Polymers --|g6.6.
       |tApplications --|g6.6.1.|tMimicking to Reduce R&D Risk --
       |g6.6.2.|tComposites --|g6.6.3.|tCoatings --|g6.6.4.
       |tPackaging Materials --|g6.6.5.|tFoams --|g6.6.6.
       |tBiomedical Applications --|g6.6.7.|tOther Applications
       |g6.7.|tConclusions --|tReferences --|g7.
       |tPolyhydroxyalkanoates: Basics, Production and 
       Applications of Microbial Biopolyesters /|rGerhart 
       Braunegg --|g7.1.|tMicrobial PHA Production, Metabolism, 
       and Structure --|g7.1.1.|tOccurrence of PHAs --|g7.1.2.
       |tIn Vivo Characteristics and Biological Role of PHAs --
       |g7.1.3.|tStructure and Composition of PHAs --|g7.1.4.
       |tMetabolic Aspects --|g7.2.|tAvailable Raw Materials for 
       PHA Production --|g7.3.|tRecovery of PHA from Biomass --
       |g7.3.1.|tGeneral Aspects of PHA Recovery --|g7.3.2.
       |tDirect Extraction of PHA from Biomass --|g7.3.3.
       |tDigestion of the non-PHA Cellular Material --|g7.3.4.
       |tDisruption of Cells of Osmophilic Microbes in Hypotonic 
       Medium --|g7.4.|tDifferent Types of PHA --|g7.4.1.|tShort 
       Chain Length vs. Medium Chain Length PHAs --|g7.4.2.
       |tEnzymatic Background: PHA Synthases --|g7.5.|tGlobal PHA
       Production --|g7.6.|tApplications of PHAs --|g7.6.1.
       |tGeneral --|g7.6.2.|tPackaging and Commodity Items --
       |g7.6.3.|tMedical Applications --|g7.6.4.|tApplication of 
       the Monomeric Building Blocks --|g7.6.5.|tSmart Materials 
       --|g7.6.6.|tControlled Release of Active Agents 
505 00 |g7.7.|tEconomic Challenges in the Production of PHAs and 
       Attempts to Overcome Them --|g7.7.1.|tPHA Production as a 
       Holistic Process --|g7.7.2.|tSubstrates as Economic Factor
       --|g7.7.3.|tDownstream Processing --|g7.7.4.|tProcess 
       Design --|g7.7.5.|tContemporary Attempts to Enhance PHA 
       Production in Terms of Economics and Product Quality --
       |g7.8.|tProcess Design --|g7.9.|tConclusion --|tReferences
       --|g8.|tPoly(Lactic Acid) /|rHideto Tsuji --|g8.1.
       |tIntroduction --|g8.2.|tHistorical Outline --|g8.3.
       |tSynthesis of Monomer --|g8.4.|tSynthesis of Poly(Lactic 
       Acid) --|g8.4.1.|tHomopolymers --|g8.4.2.|tLinear 
       Copolymers --|g8.5.|tProcessing --|g8.6.|tCrystallization 
       --|g8.6.1.|tCrystal Structures --|g8.6.2.|tCrystalline 
       Morphology --|g8.6.3.|tCrystallization Behaviour --|g8.7.
       |tPhysical Properties --|g8.7.1.|tMechanical Properties --
       |g8.7.2.|tThermal Properties --|g8.7.3.|tPermeability --
       |g8.7.4.|tSurface Properties --|g8.7.5.|tElectrical 
       Properties --|g8.7.6.|tOptical Properties --|g8.8.
       |tHydrolytic Degradation --|g8.8.1.|tDegradation Mechanism
       --|g8.8.2.|tEffects of Surrounding Media --|g8.8.3.
       |tEffects of Material Parameters|g8.9.|tThermal 
       Degradation --|g8.10.|tBiodegradation --|g8.11.
       |tPhotodegradation --|g8.12.|tHigh-Performance Poly(Lactic
       Acid)-Based Materials --|g8.12.1.|tNucleating or 
       Crystallization-Accelerating Fillers --|g8.12.2.
       |tComposites and Nanocomposites --|g8.12.3.|tFibre-
       Reinforced Plastics (FRPs) --|g8.12.4.|tStereocomplexation
       --|g8.13.|tApplications --|g8.13.1.|tAlternatives to Petro
       -Based Polymers --|g8.13.2.|tBiomedical --|g8.13.3.
       |tEnvironmental Applications --|g8.14.|tRecycling --
       |g8.15.|tConclusions --|tReferences --|g9.|tOther 
       Polyesters from Biomass Derived Monomers /|rJacco van 
       Haveren --|g9.1.|tIntroduction --|g9.2.|tIsohexide 
       Polyesters --|g9.2.1.|tIntroduction --|g9.2.2.|tSemi-
       Aromatic Homo-Polyesters --|g9.2.3.|tSemi-Aromatic Co-
       Polyesters --|g9.2.4.|tAliphatic Polyesters --|g9.2.5.
       |tModified Isohexides --|g9.3.|tFuran-Based Polyesters --
       |g9.3.1.|tIntroduction --|g9.3.2.|t2,5-
       Dihydroxymethylfuran (DHMF)-Based Polyesters --|g9.3.3.|t5
       -Hydroxymethylfuroic Acid (HMFA) Based Polyesters --
       |g9.3.4.|tFuran-2,5-Dicarboxylic Acid (FDCA) Based 
       Polyesters --|g9.3.5.|tFuture Outlook --|g9.4.
       |tPoly(Butylene Succinate) (PBS) and Its Copolymers
       |g9.4.1.|tSuccinic Acid --|g9.4.2.|t1,4-Butanediol (BDO) -
       -|g9.4.3.|tPoly(Butylene Succinate) (PBS) --|g9.4.4.|tPBS 
       Copolymers --|g9.4.5.|tPBS Biodegradability --|g9.4.6.
       |tPBS Processability --|g9.4.7.|tPBS Blends --|g9.4.8.
       |tPBS Markets and Applications --|g9.4.9.|tFuture Outlook 
       --|g9.5.|tBio-Based Terephthalates --|g9.5.1.
       |tIntroduction --|g9.5.2.|tBio-Based Diols: Ethylene 
       Glycol, 1,3-Propanediol, 1,4-Butanediol --|g9.5.3.|tBio-
       Based Xylenes, Isophthalic and Terephthalic Acid --|g9.6.
       |tConclusions --|tReferences --|g10.|tPolyamides from 
       Biomass Derived Monomers /|rBenjamin Brehmer --|g10.1.
       |tIntroduction --|g10.1.1.|tWhat are Polyamides? --
       |g10.1.2.|tWhat is the Polymer Pyramid? --|g10.1.3.|tWhere
       do Polyamides from Biomass Derived Monomers Fit? --|g10.2.
       |tTechnical Performance of Polyamides --|g10.2.1.|tHow to 
       Differentiate Performance --|g10.2.2.|tOverview of Current
       Applications --|g10.2.3.|tTypical Association of 
       Biopolymers --|g10.3.|tChemical Synthesis --|g10.3.1.
       |tCastor Bean to Intermediates --|g10.3.2.|tUndecenoic 
       Acid Route --|g10.3.3.|tSebacic Acid Route --|g10.3.4.
       |tDecamethylene Diamine Route|g10.4.|tMonomer Feedstock 
       Supply Chain --|g10.4.1.|tDescription of Supply Chain --
       |g10.4.2.|tPricing Situation --|g10.5.|tProducers --
       |g10.6.|tSustainability Aspects --|g10.6.1.|tBiosourcing -
       -|g10.6.2.|tLifecycle Assessments --|g10.6.3.|tLabelling 
       and Certification --|g10.7.|tImprovement and Outlook --
       |tReferences --|g11.|tPolyolefin-Based Plastics from 
       Biomass-Derived Monomers /|rR.J. Koopmans --|g11.1.
       |tIntroduction --|g11.2.|tPolyolefin-Based Plastics --
       |g11.3.|tBiomass --|g11.4.|tChemicals from Biomass --
       |g11.5.|tChemicals from Biotechnology --|g11.6.|tPlastics 
       from Biomass --|g11.7.|tPolyolefin Plastics from Biomass 
       and Petrochemical Technology --|g11.7.1.|tOne-Carbon 
       Building Blocks --|g11.7.2.|tTwo-Carbon Building Blocks --
       |g11.7.3.|tThree-Carbon Building Blocks --|g11.8.
       |tPolyolefin Plastics from Biomass and BiotechnologyNote 
       continued:|g11.9.|tBio-Polyethylene and Bio-Polypropylene 
       --|g11.10.|tPerspective and Outlook --|tReferences --|g12.
       |tFuture Trends for Recombinant Protein-Based Polymers: 
       The Case Study of Development and Application of Silk-
       Elastin-Like Polymers /|rRaul Machado --|g12.1.
       |tIntroduction --|g12.2.|tProduction of Recombinant 
       Protein-Based Polymers (rPBPs) --|g12.3.|tThe Silk-Elastin
       -Like Polymers (SELPs) --|g12.3.1.|tSELPs for Biomedical 
       Applications: Hydrogels for Localized Delivery --|g12.3.2.
       |tMechanical Properties of SELP Hydrogels --|g12.3.3.
       |tSpun Fibres --|g12.3.4.|tSolvent Cast Films --|g12.4.
       |tFinal Considerations --|tReferences --|g13.|tRenewable 
       Raw Materials and Feedstock for Bioplastics /|rStephan 
       Piotrowski --|g13.1.|tIntroduction --|g13.2.|tFirst- and 
       Second-Generation Crops: Advantages and Disadvantages
       |g13.3.|tThe Amount of Land Needed to Grow Feedstock for 
       Bio-Based Plastics --|g13.4.|tProductivity and 
       Availability of Arable Land --|g13.5.|tResearch on 
       Feedstock Optimization --|g13.6.|tAdvanced Breeding 
       Technologies and Green Biotechnology --|g13.7.|tSome Facts
       about Food Prices and Recent Food Price Increases --
       |g13.8.|tIs there Enough Land for Food, Animal Feed, 
       Bioenergy and Industrial Material Use, Including Bio-Based
       Plastics? --|tReferences --|g14.|tThe Promise of 
       Bioplastics -- Bio-Based and Biodegradable-Compostable 
       Plastics /|rRamani Narayan --|g14.1.|tValue Proposition 
       for Bio-Based Plastics --|g14.2.|tExemplars of Zero or 
       Reduced Material Carbon Footprint -- Bio-PE, Bio-PET and 
       PLA --|g14.3.|tProcess Carbon Footprint and LCA --|g14.4.
       |tDetermination of Bio-Based Carbon Content --|g14.5.|tEnd
       -of-Life Options for Bioplastics -- Biodegradability-
       Compostability --|g14.6.|tSummary --|tReferences. 
588    Description based on print version record and CIP data 
       provided by publisher. 
650  0 Biopolymers.|0
650  0 Plastics.|0
655  0 Electronic books. 
655  4 Electronic books. 
700 1  Kabasci, Stephan.|0
776 08 |iPrint version:|tBio-based plastics|dChichester, West 
       Sussex, United Kingdom : John Wiley & Sons Inc., 2014
       |z9781119994008|w(DLC)  2013026528 
830  0 Wiley series in renewable resources.|0
912    .b15943586JOHNC 
990    ProQuest ebrary|bebrary Academic Complete|c2017-08-11
       |yRemoved from collection ebrary.ebooks|5MTU 
990    ProQuest ebrary|bebrary Academic Complete|c2017-06-30
       |yMaster record variable field(s) change: 505|5MTU 
990    ProQuest ebrary|bebrary Academic Complete|c2017-04-20|5MTU
View online