Return to home page
Searching: Otterbein library catalog
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
Title Quantum modeling of complex molecular systems / Jean-Louis Rivail, Manuel Ruiz-Lopez, Xavier Assfeld.
Imprint Cham : Springer, [2015]

View online
View online
Series Challenges and advances in computational chemistry and physics ; volume 21
Challenges and advances in computational chemistry and physics ; 21.
Subject Chemistry, Physical and theoretical -- Computer simulation.
Genre/Form Electronic books.
Electronic books.
Alt Name Rivail, J. L. (Jean Louis),
Ruiz-Lopez, M. F. (Manuel F.),
Assfeld, Xavier,
Description 1 online resource (ix, 523 pages).
polychrome rdacc
Bibliography Note Includes bibliographical references and index.
Contents Adressing the Issues of Non-Additivity in the Development of Quantum Chemistry-Grounded Polarizable Molecular Mechanics -- Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptative QM/MM -- Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics -- Probing Proton Transfer Reactions in Molecular Dynamics- A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models -- Accelerating QM/MM Calculations by Using the Mean Field Approximation -- Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions -- Structure and Electronic Properties of Liquids and Complex Molecular Systems in Solution: Coupling Many-Body Energy Decomposition Schemes to Born-Oppenheimer Molecular Dynamics -- Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution -- Towards an Accurate Model for Halogens in Aqueous Solutions -- Theoretical Studies of the Solvation of abundant Toxic Mercury Species in Aqueous Media -- Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces -- QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems -- The Non Empirical Local Self Consistent Field Method. Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems -- Computational Study of the Initial Step in the Reaction Mechanism of Dehaloperoxidase A. Co nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue -- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase -- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles -- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems.
Summary This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems. Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.
Access License restrictions may limit access.
Note Vendor-supplied metadata.
ISBN 9783319216263 (electronic bk.)
3319216260 (electronic bk.)
3319216252 (print)
9783319216256 (print)
ISBN/ISSN 10.1007/978-3-319-21626-3
OCLC # 924714143
Additional Format Printed edition: 9783319216256