Return to home page
Searching: Otterbein library catalog
Some OPAL libraries remain closed or are operating at reduced service levels. Materials from those libraries may not be requestable; requested items may take longer to arrive. Note that pickup procedures may differ between libraries. Please contact your library for new procedures, specific requests, or other assistance.

LEADER 00000cam  2200709Ii 4500 
001    879570553 
003    OCoLC 
005    20181130031354.4 
006    m     o  d         
007    cr cnu---unuuu 
008    140512s2014    nyua    ob    000 0 eng d 
019    884589920|a985032733|a1005789664|a1048156683|a1066655794 
020    9781493904198|q(electronic bk.) 
020    1493904191|q(electronic bk.) 
020    1493904183|q(print) 
020    9781493904181|q(print) 
020    |z9781493904181 
024 7  10.1007/978-1-4939-0419-8|2doi 
035    (OCoLC)879570553|z(OCoLC)884589920|z(OCoLC)985032733
       |z(OCoLC)1005789664|z(OCoLC)1048156683|z(OCoLC)1066655794 
040    GW5XE|beng|erda|epn|cGW5XE|dN$T|dCOO|dYDXCP|dOCLCF|dUPM
       |dVT2|dE7B|dEBLCP|dMHW|dDEBSZ|dJG0|dOCLCQ|dOCLCO|dZ5A|dFIE
       |dVGM|dESU|dOCLCQ|dBUF|dREB|dIOG|dCEF|dOCLCQ|dINT|dU3W
       |dOCLCQ|dWYU 
049    MAIN 
050  4 QA313 
072  7 MAT034000|2bisacsh 
072  7 MAT|x005000|2bisacsh 
072  7 MAT|x034000|2bisacsh 
072  7 PBWR|2bicssc 
082 04 515/.48|223 
245 00 Ergodic theory, open dynamics, and coherent structures /
       |cWael Bahsoun, Christopher Bose, Gary Froyland, editors. 
264  1 New York, NY :|bSpringer,|c[2014] 
264  4 |c2014 
300    1 online resource (xvi, 227 pages) :|billustrations (some 
       color). 
336    text|btxt|2rdacontent 
337    computer|bc|2rdamedia 
338    online resource|bcr|2rdacarrier 
340    |gpolychrome|2rdacc|0http://rdaregistry.info/termList/
       RDAColourContent/1003 
347    text file|2rdaft|0http://rdaregistry.info/termList/
       fileType/1002 
490 1  Springer proceedings in mathematics & statistics,|x2194-
       1009 ;|vvolume 70 
504    Includes bibliographical references. 
505 0  |6880-01|a1. Nonautonomous flows as open dynamical systems
       : characterising escape rates and time-varying boundaries 
       -- 2. Eigenvalues of transfer operators for dynamical 
       systems with holes -- 3. Periodic points, escape rates and
       escape measures -- 4. A multi-time step method to compute 
       optical flow with scientific priors for observations of a 
       fluidic system -- 5. Numerical approximation of 
       conditionally invariant measures via maximum entropy -- 6.
       Lebesgue ergodicity of a dissipative subtractive algorithm
       -- 7. Improved estimates of survival probabilities via 
       isospectral transformations -- 8. Dispersing billiards 
       with small holes -- 9. Almost-invariant and finite-time 
       coherent sets: directionality, duration, and diffusion -- 
       Return-time statistics, hitting-time statistics, and 
       inducing. 
520    This book is comprised of selected research articles 
       developed from a workshop onErgodic Theory, Probabilistic 
       Methods and Applications, held in April 2012 at the 
       BanffInternational Research Station. It contains 
       contributions from world leading expertsin ergodic theory,
       dynamical systems, numerical analysis, fluid dynamics, and
       networks. The volume will serve asa valuable reference for
       mathematicians, physicists, engineers, physical 
       oceanographers, atmospheric scientists, biologists, and 
       climate scientists, who currently use, or wish to learn 
       how to use, probabilistic techniques to cope with 
       dynamical models that display open, coherent, or non-
       equilibrium behavior. 
588 0  Online resource; title from PDF title page (SpringerLink, 
       viewed May 12, 2014). 
650  0 Ergodic theory.|0http://id.loc.gov/authorities/subjects/
       sh85044600 
650 14 Mathematics. 
650 24 Dynamical Systems and Ergodic Theory. 
650 24 Probability Theory and Stochastic Processes. 
650 24 Calculus of Variations and Optimal Control; Optimization. 
650 24 Optimization. 
655  4 Electronic books. 
700 1  Bahsoun, Wael,|0http://id.loc.gov/authorities/names/
       no2016071975|eeditor. 
700 1  Bose, Christopher,|0http://id.loc.gov/authorities/names/
       no2016072142|eeditor. 
700 1  Froyland, Gary,|0http://id.loc.gov/authorities/names/
       no2016071530|eeditor. 
776 08 |iPrinted edition:|z9781493904181 
830  0 Springer proceedings in mathematics & statistics ;|0http:/
       /id.loc.gov/authorities/names/no2013000283|vv. 70. 
880    |6520-00|aThis book is comprised of selected research 
       articles developed from a workshop on�Ergodic 
       Theory, Probabilistic Methods and Applications, held in 
       April 2012 at the Banff�International Research 
       Station.�It contains contributions from world 
       leading experts�in ergodic theory, dynamical 
       systems, numerical analysis, fluid dynamics, and networks.
       �The volume will serve as�a valuable 
       reference for mathematicians, physicists, engineers, 
       physical oceanographers, atmospheric scientists, 
       biologists, and climate scientists, who currently use, or 
       wish to learn how to use, probabilistic techniques to cope
       with dynamical models that display open, coherent, or non-
       equilibrium behavior. 
880 00 |6505-01/(S|gMachine generated contents note:|g1.1.
       |tIntroduction /|rSanjeeva Balasuriya --|g1.2.
       |tPerturbative Setting /|rSanjeeva Balasuriya --|g1.3.
       |tBoundaries Between Open Dynamical Systems: Invariant 
       Manifolds /|rSanjeeva Balasuriya --|g1.4.|tFlux 
       Quantification /|rSanjeeva Balasuriya --|g1.5.
       |tSimplifications of Flux Formula in the Subcases /
       |rSanjeeva Balasuriya --|g1.6.|tConcluding Remarks /
       |rSanjeeva Balasuriya --|tReferences /|rSanjeeva 
       Balasuriya --|g2.1.|tIntroduction /|rOscar F. Bandtlow /
       |rOliver Jenkinson --|g2.2.|tEigenvalue Estimates via 
       Weyl's Inequality /|rOscar F. Bandtlow /|rOliver Jenkinson
       --|g2.3.|tCommon Spectrum /|rOscar F. Bandtlow /|rOliver 
       Jenkinson --|g2.4.|tHilbert Hardy Space /|rOscar F. 
       Bandtlow /|rOliver Jenkinson --|tReferences /|rOscar F. 
       Bandtlow /|rOliver Jenkinson --|g3.1.|tIntroduction /
       |rOscar F. Bandtlow /|rOliver Jenkinson /|rMark Pollicott 
       --|g3.2.|tTransfer Operators and Determinants /|rOscar F. 
       Bandtlow /|rOliver Jenkinson /|rMark Pollicott --|g3.3.
       |tDetermining the Escape Rate /|rOscar F. Bandtlow /
       |rOliver Jenkinson /|rMark Pollicott --|g3.4.|tDetermining
       the Escape Measure /|rOscar F. Bandtlow /|rOliver 
       Jenkinson /|rMark Pollicott --|g3.5.|tExample /|rOscar F. 
       Bandtlow /|rOliver Jenkinson /|rMark Pollicott --|g3.5.1.
       |tEscape Rate /|rOscar F. Bandtlow /|rOliver Jenkinson /
       |rMark Pollicott --|g3.5.2.|tEscape Measure /|rOscar F. 
       Bandtlow /|rOliver Jenkinson /|rMark Pollicott --
       |tReferences /|rOscar F. Bandtlow /|rOliver Jenkinson /
       |rMark Pollicott --|g4.1.|tIntroduction /|rRanil Basnayake
       /|rErik M. Bollt --|g4.2.|tClassical Optical Flow Method /
       |rRanil Basnayake /|rErik M. Bollt --|g4.2.1.|tEuler-
       Lagrange Equations /|rRanil Basnayake /|rErik M. Bollt --
       |g4.2.2.|tSolution to the Optical Flow Problem /|rRanil 
       Basnayake /|rErik M. Bollt --|g4.3.|tStream Function 
       Method /|rRanil Basnayake /|rErik M. Bollt --|g4.4.|tMulti
       -time Step Method /|rRanil Basnayake /|rErik M. Bollt --
       |g4.5.|tScientific Priors /|rRanil Basnayake /|rErik M. 
       Bollt --|g4.6.|tResults from Multi-time Step Method /
       |rRanil Basnayake /|rErik M. Bollt --|g4.6.1.|tSynthetic 
       Data /|rRanil Basnayake /|rErik M. Bollt --|g4.6.2.
       |tOceanographic Data Set /|rRanil Basnayake /|rErik M. 
       Bollt --|g4.7.|tMixing and Transport Barriers /|rRanil 
       Basnayake /|rErik M. Bollt --|g4.8.|tConclusion /|rRanil 
       Basnayake /|rErik M. Bollt --|tReferences /|rRanil 
       Basnayake /|rErik M. Bollt --|g5.1.|tIntroduction /
       |rChristopher Bose /|rRua Murray --|g5.1.1.|tNonsingular 
       Open Dynamical Systems /|rChristopher Bose /|rRua Murray -
       -|g5.1.2.|tEscape, Conditionally Invariant Measures and 
       Their Supports /|rChristopher Bose /|rRua Murray --
       |g5.1.3.|tConditional Transfer Operators and the 
       Multiplicity of ACCIMs /|rChristopher Bose /|rRua Murray -
       -|g5.2.|tConvex Optimisation for the ACCIM Problem /
       |rChristopher Bose /|rRua Murray --|g5.2.1.|tMoment 
       Formulation of the ACCIM Problem /|rChristopher Bose /
       |rRua Murray --|g5.2.2.|tConvex Duality for Problem (Pn, 
       α) /|rChristopher Bose /|rRua Murray --|g5.2.3.|tDomain 
       Reduction and Dual Optimality Conditions /|rChristopher 
       Bose /|rRua Murray --|g5.3.|tMAXENT Procedure for 
       Approximating ACCIMs /|rChristopher Bose /|rRua Murray --
       |g5.3.1.|tPiecewise Constant Test Functions and Domain 
       Reduction /|rChristopher Bose /|rRua Murray --|g5.3.2.
       |tIterative Solution of the Optimality Equations /
       |rChristopher Bose /|rRua Murray --|g5.3.3.|tSketch Proof 
       of Convergence of the Fixed Point Iteration /|rChristopher
       Bose /|rRua Murray --|g5.3.4.|tExamples /|rChristopher 
       Bose /|rRua Murray --|g5.4.|tConcluding Remarks /
       |rChristopher Bose /|rRua Murray --|tReferences /
       |rChristopher Bose /|rRua Murray --|g6.1.|tIntroduction /
       |rHenk Bruin --|g6.2.|tProof of Theorem 7.3 /|rHenk Bruin 
       --|g6.2.1.|tFinding Convenient Coordinates /|rHenk Bruin -
       -|g6.2.2.|tDistortion Results /|rHenk Bruin --|g6.2.3.
       |tGrowth of ak and ak at Different Points /|rHenk Bruin --
       |g6.2.4.|tMain Proof /|rHenk Bruin --|tReferences /|rHenk 
       Bruin --|g7.1.|tIntroduction /|rL.A. Bunimovich /|rB.Z. 
       Webb --|g7.2.|tOpen and Closed Dynamical Systems /|rB.Z. 
       Webb /|rL.A. Bunimovich --|g7.3.|tPiecewise Linear 
       Functions /|rB.Z. Webb /|rL.A. Bunimovich --|g7.4.
       |tNonlinear Estimates /|rB.Z. Webb /|rL.A. Bunimovich --
       |g7.5.|tImproved Escape Estimates /|rB.Z. Webb /|rL.A. 
       Bunimovich --|g7.6.|tConclusion /|rB.Z. Webb /|rL.A. 
       Bunimovich --|tReferences /|rB.Z. Webb /|rL.A. Bunimovich 
       --|g8.1.|tIntroduction /|rMark F. Demers --|g8.1.1.
       |tPreliminaries /|rMark F. Demers --|g8.2.|tSetting and 
       Results /|rMark F. Demers --|g8.2.1.|tClasses of 
       Dispersing Billiards /|rMark F. Demers --|g8.2.2.
       |tAdmissible Holes /|rMark F. Demers --|g8.2.3.|tTransfer 
       Operator /|rMark F. Demers --|g8.2.4.|tMain Results /
       |rMark F. Demers --|g8.3.|tAnalytical Framework /|rMark F.
       Demers --|g8.3.1.|tRepresentation of Admissible Stable 
       Curves /|rMark F. Demers --|g8.3.2.|tNorms /|rMark F. 
       Demers --|g8.3.3.|tUniform Properties of T /|rMark F. 
       Demers --|g8.3.4.|tVerifying (A1)-(A5) for Our Classes of 
       Maps /|rMark F. Demers --|g8.3.5.|tProperties of the 
       Banach Spaces /|rMark F. Demers --|g8.4.|tExtension to 
       Open Systems /|rMark F. Demers --|g8.4.1.|tComplexity 
       Bound and Proof of Proposition 8.1 /|rMark F. Demers --
       |g8.4.2.|tProof of Proposition 8.2 /|rMark F. Demers --
       |g8.4.3.|tProof of Theorems 8.1 and 8.2 /|rMark F. Demers 
       --|g8.5.|tVariational Principle /|rMark F. Demers --
       |g8.5.1.|tDefinition of vH /|rMark F. Demers --|g8.5.2.
       |tReview: Young Towers with Holes /|rMark F. Demers --
       |g8.5.3.|tProof of Theorem 8.3 Assuming a Young Tower 
       Respecting H /|rMark F. Demers --|g8.5.4.|tExistence of a 
       Young Tower Respecting the Hole /|rMark F. Demers --
       |tReferences /|rMark F. Demers --|g9.1.|tIntroduction /
       |rGary Froyland /|rKathrin Padberg-Gehle --|g9.2.
       |tTransfer Operators and Three Transport Problems /|rGary 
       Froyland /|rKathrin Padberg-Gehle --|g9.2.1.|tAutonomous, 
       Time-Independent, or Periodically Forced Dynamics /|rGary 
       Froyland /|rKathrin Padberg-Gehle --|g9.2.2.
       |tNonautonomous, Time-Dependent, or Aperiodically Forced 
       Dynamics: Single Time Direction /|rGary Froyland /
       |rKathrin Padberg-Gehle --|g9.2.3.|tNonautonomous, Time-
       Dependent, or Aperiodically Forced Dynamics: Both Time 
       Directions /|rGary Froyland /|rKathrin Padberg-Gehle --
       |g9.3.|tTwo Key Tools /|rKathrin Padberg-Gehle /|rGary 
       Froyland --|g9.3.1.|tBuilding Block Operator /|rKathrin 
       Padberg-Gehle /|rGary Froyland --|g9.3.2.|tOptimality 
       Properties of Compact Self-Adjoint Operators on Hilbert 
       Space /|rGary Froyland /|rKathrin Padberg-Gehle --|g9.4.
       |tMain Constructions and Results /|rGary Froyland /
       |rKathrin Padberg-Gehle --|g9.4.1.|tAutonomous Dynamics /
       |rGary Froyland /|rKathrin Padberg-Gehle --|g9.4.2.
       |tNonautonomous or Time-Dependent Dynamics: Single Time 
       Direction /|rKathrin Padberg-Gehle /|rGary Froyland --
       |g9.4.3.|tNonautonomous or Time-Dependent Dynamics: Both 
       Time Directions /|rGary Froyland /|rKathrin Padberg-Gehle 
       --|g9.5.|tFurther Discussion /|rKathrin Padberg-Gehle /
       |rGary Froyland --|g9.5.1.|tSingle- vs. 
990    SpringerLink|bSpringer English/International eBooks 2014 -
       Full Set|c2018-11-30|yMaster record variable field(s) 
       change: 650|5OH1 
990    SpringerLink|bSpringer English/International eBooks 2014 -
       Full Set|c2018-11-16|yMaster record variable field(s) 
       change: 505|5OH1 
990    SpringerLink|bSpringer English/International eBooks 2014 -
       Full Set|c2018-10-31|yNew collection 
       springerlink.ebooks2014|5OH1 
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SPRINGER EBOOKS    ONLINE  
View online

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team