Return to home page
Searching: Otterbein library catalog
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
EBOOK
Title Emerging nanotechnologies in rechargeable energy storage systems / edited by Lide M. Rodriguez-Martinez, Noshin Omar.
Imprint Amsterdam, Netherlands : Elsevier, 2017.
2017

LOCATION CALL # STATUS MESSAGE
 OHIOLINK SAFARI EBOOKS    ONLINE  
View online
LOCATION CALL # STATUS MESSAGE
 OHIOLINK SAFARI EBOOKS    ONLINE  
View online
Series Micro & nano technologies
Micro & nano technologies.
Subject Storage batteries.
Storage batteries -- Materials.
Nanotechnology.
Alt Name Rodriguez-Martinez, Lide M.,
Omar, Noshin,
Description 1 online resource.
Note Includes index.
Bibliography Note Includes bibliographical references and index.
Summary For those interested in materials and electrochemical cell development, this book provides focused coverage of the development, process, characterization techniques, modeling, safety and applications of nanomaterials for rechargeable energy storage systems -- Edited summary from book.
Contents Cover -- Title page -- Copyright page -- Contents -- Contributors -- Preface -- Chapter One -- Electrolytes for Li- and Na-Ion Batteries: Concepts, Candidates, and the Role of Nanotechnology -- 1 -- Introduction and Electrolyte Concept -- 2 -- Liquid Electrolytes -- 2.1 -- Importance of the SEI layer -- 2.2 -- Additives: general -- 2.2.1 -- Electrolyte additives used in Li-ion batteries -- 2.2.1.1 -- Additives for SEI forming improver -- 2.2.1.2 -- Additives for SEI morphology modifier -- 2.2.1.3 -- Additives for cathode protection -- 2.2.1.4 -- Salt stabilizer additives -- 2.2.1.5 -- Additives for safety protection -- 2.2.1.6 -- Other types of additives -- 2.3 -- Electrode-electrolyte compatibility: SEI with ionic liquids -- 2.4 -- Use of nanotechnology in liquid electrolytes -- 3 -- Solid Electrolytes -- 3.1 -- Polymer-based electrolytes -- 3.1.1 -- Solid polymer electrolytes -- 3.1.2 -- Gel polymer electrolytes -- 3.2 -- Inorganic electrolytes -- 3.2.1 -- Metal oxides -- 3.2.2 -- Metal sulfides -- 3.3 -- Composite solid electrolytes -- 3.3.1 -- Sulfide-oxide composite inorganic electrolytes -- 3.3.2 -- Organic-inorganic composite electrolytes -- 3.3.3 -- Conclusions -- 3.4 -- Integration of solid electrolytes into all-solid-state battery devices -- 3.5 -- The promise of nanostructured electrolytes -- 4 -- Conclusions -- Glossary -- References -- Chapter Two -- Review of Nanotechnology for Anode Materials in Batteries -- 1 -- A High-Performance Anode -- 2 -- Benefits of a Nanostructured Anode -- 3 -- Geometrical Aspects and Design of Nanostructured Anodes -- 3.1 -- Low-dimensional nanostructures -- 3.2 -- High-dimensional nanostructure -- 4 -- Carbon-Based Anodes -- 5 -- Silicon-Based Anodes -- 6 -- Metal Alloy Anodes -- 7 -- Metal Oxide-Based Anodes -- 8 -- Metal Phosphide and Sulfide Anodes -- 9 -- Summary and Conclusions -- Glossary -- References.
Chapter Three -- Review of Nanotechnology for Cathode Materials in Batteries -- 1 -- Introduction -- 2 -- Nanostructural Design and Synthesis of Cathode Materials for Lithium-Ion Batteries -- 2.1 -- Nanotemplate methods -- 2.2 -- Solvothermal/hydrothermal methods -- 2.3 -- Solid-state reaction methods -- 2.4 -- Coprecipitation methods -- 3 -- Nanoscale Surface Modification on Cathode Materials for Lithium-Ion Batteries -- 3.1 -- Atomic layer deposition -- 3.2 -- Chemical vapor deposition -- 3.3 -- Sputtering -- 3.4 -- Wet-coating/sol-gel method -- 4 -- Conclusions -- Glossary -- References -- Chapter Four -- Nanotechnology in Electrochemical Capacitors -- 1 -- Introduction -- 2 -- Basic Principles and Classification of Electrochemical Capacitors -- 2.1 -- Supercapacitor materials and cell configurations -- 2.2 -- Electrolytes for supercapacitors -- 2.3 -- Electroanalytical methods for studying supercapacitors: cyclic voltammetry, galvanostatic cycling, impedance spectroscopy -- 3 -- Parameters Governing Supercapacitor Performance -- 3.1 -- Energy and power density of supercapacitors -- 3.2 -- Other relevant metrics: cost, cycle life, temperature range, safety -- 4 -- Nanotechnology in Electrical Double Layer Capacitors -- 4.1 -- Electrical double layer: nanopores versus planar surface -- 4.2 -- Tuning nanoporous carbons to optimum capacitive charge storage -- 5 -- Pseudocapacitive Materials -- 5.1 -- Pseudocapacitance in carbon nanomaterials: charge storage by carbon functionalities and reversible hydrogen electrosorption -- 5.2 -- Nanosizing in pseudocapacitive inorganic materials: oxide supercapacitors -- 5.3 -- Pseudocapacitive charge storage by composites between nanocarbons and inorganic materials -- 6 -- Conclusions and Perspectives -- Glossary -- References -- Chapter Five -- Characterization of Nanomaterials for Energy Storage -- 1 -- Macro- and Microscale Characterization.
2 -- Ex Situ, "Postmortem" Analysis versus In Situ Electrochemistry -- 3 -- Structural Analysis -- 4 -- Chemical Analysis (Spectroscopic Techniques) -- 5 -- Nanoscale Characterization -- 5.1 -- Nanoscale resolution in 3D -- 5.2 -- Nanoscale resolution in lower dimensions (on a surface or in a slab of material) -- 6 -- Electron Microscopy -- 6.1 -- SEM -- 6.2 -- TEM -- 6.3 -- Application of SEM to materials characterization -- 6.4 -- Application of TEM to materials characterization -- 7 -- Improved Instrumentation and Inspirations for New Methods -- 7.1 -- New developments for standard techniques -- 7.2 -- Inspirations from surface science techniques -- 8 -- Summary -- Glossary -- References -- Chapter Six -- Electrochemical-Thermal Characterization and Thermal Modeling for Batteries -- 1 -- Introduction -- 2 -- Heat Generation in Lithium-Ion Batteries -- 2.1 -- Reversible and irreversible heat -- 2.1.1 -- Reversible heat -- 2.1.2 -- Irreversible heat -- 2.2 -- Abuse leading to thermal runaway -- 3 -- Electrochemical-Calorimetric Measurements on Lithium-Ion Batteries -- 3.1 -- Isothermal heat conduction calorimetry -- 3.2 -- Accelerating rate calorimetry -- 3.2.1 -- Cycling under isoperibolic conditions -- 3.2.2 -- Cycling under adiabatic conditions -- 3.2.3 -- Determination of heat data -- 3.2.3.1 -- Effective specific heat capacity of a cell -- 3.2.3.2 -- Heat transfer coefficient -- 3.2.4 -- Thermal runaway testing in an ARC -- 4 -- Thermal Modeling of Lithium-Ion Batteries -- 4.1 -- The energy conservation -- 4.2 -- Identifying the electrochemical heat sources -- 4.3 -- Modeling the thermal runaway and exothermic heat sources -- 5 -- Simulations With COMSOL Multiphysics -- 5.1 -- Adiabatic simulations up to a thermal runaway -- 5.2 -- Isoperibolic simulations of cell cycling -- 6 -- Conclusions -- Glossary -- References.
Chapter Seven -- Life Cycle Assessment of Nanotechnology in Batteries for Electric Vehicles -- 1 -- Introduction -- 1.1 -- Problem setting and environmental concerns related to nanotechnology -- 1.2 -- Life cycle assessments and battery nanotechnology -- 1.3 -- Life cycle assessment methodology -- 1.3.1 -- Goal and scope definition -- 1.3.1.1 -- Goal and scope -- 1.3.1.2 -- Functional unit -- 1.3.1.3 -- System boundaries -- 1.3.2 -- Inventory analysis -- 1.3.3 -- Impact assessment -- 1.3.4 -- Interpretation -- 2 -- Case Study: Use of Nanomaterials in Li-Ion Battery Anodes -- 2.1 -- Goal and scope of the analysis -- 2.1.1 -- Goal -- 2.1.2 -- Scope -- 2.2 -- Life cycle inventory of Si nanowire-based batteries and conventional graphite anode-based batteries -- 2.2.1 -- Battery characterization -- 2.2.2 -- Manufacturing stage -- 2.2.3 -- Use stage -- 2.2.4 -- End of life -- 3 -- Life Cycle Impact Assessment -- 3.1 -- Climate change -- 3.2 -- Cumulative energy demand -- 3.3 -- Human toxicity -- 4 -- Discussion and Conclusions -- Glossary -- References -- Chapter Eight -- Safety of Rechargeable Energy Storage Systems with a focus on Li-ion Technology -- 1 -- Introduction -- 2 -- Hazards -- 2.1 -- Mechanical/physical hazards -- 2.1.1 -- Fire -- 2.1.2 -- Explosion -- 2.2 -- Electrical hazards -- 2.3 -- Chemical hazards -- 3 -- Failure Scenarios -- 3.1 -- Overheating -- 3.2 -- Mechanical deformation -- 3.3 -- External short circuit -- 3.4 -- Overcharge -- 4 -- Risk Mitigation -- 4.1 -- Materials selection -- 4.1.1 -- Electrodes -- 4.1.1.1 -- Cathode materials -- 4.1.1.2 -- Anode material -- 4.1.2 -- Binders -- 4.1.3 -- Separators -- 4.1.4 -- Electrolytes -- 4.2 -- Protective devices -- 4.3 -- System-level approaches -- 5 -- Safety Tests -- 5.1 -- Thermal tests -- 5.2 -- Mechanical tests -- 5.3 -- Electrical tests -- 5.4 -- Chemical hazards monitoring -- 5.5 -- Hazards considerations about safety testing.
6 -- Conclusions and Outlook -- Glossary -- References -- Chapter Nine -- Application of the Energy Storage Systems -- 1 -- Introduction: Energy Storage Systems and Their Application -- 2 -- Characterization of Storage Cells and Devices, Parameters, and Features -- 3 -- Overview of Storage Cells, Modules, and Systems -- 3.1 -- Mechanical storage -- 3.2 -- Electrical storage -- 3.3 -- Electrochemical storage -- 3.4 -- Hybrid concepts -- 4 -- Applications That Use Storage Facilities -- 5 -- Conclusions -- Glossary -- References -- Index -- Back cover.
Note Online resource; title from PDF title page (ScienceDirect, viewed February 17, 2017).
ISBN 9780323429962 (electronic bk.)
0323429963 (electronic bk.)
9780323429771 (print)
0323429777
OCLC # 972092231
Additional Format Print version: 0323429777 9780323429771 (OCoLC)959034649