Return to home page
Searching: Otterbein library catalog
While many OPAL libraries have resumed lending and borrowing, some continue to operate at reduced service levels or limit in-person use to their campus community. Note that pickup services and procedures may differ between libraries. Please contact your library regarding open hours, pickup procedures, specific requests, or other assistance.
  Previous Record Previous Item Next Item Next Record
  Reviews, Summaries, etc...
Author Mackenzie, Adrian, 1962-
Title Machine learners : archaeology of a data practice / Adrian Mackenzie.
Imprint Cambridge, Massachusetts : The MIT Press, [2017]

View online
View online
Author Mackenzie, Adrian, 1962-
Subject Information theory.
Machine learning -- Philosophy.
Electronic data processing -- Philosophy.
Description 1 online resource (xvi, 252 pages) : illustrations
Bibliography Note Includes bibliographical references (pages 223-241) and index.
Contents Introduction : into the data -- Diagramming machines -- Vectorization and its consequences -- Machines finding functions -- N=[upside down A]X : probabilization and the taming of machines -- Patterns and differences -- Regularizing and materializing objects -- Propagating subject positions -- Conclusion : out of the data.
Summary Machine learning - programming computers to learn from data - has spread across scientific disciplines, media, entertainment, and government. Medical research, autonomous vehicles, credit transaction processing, computer gaming, recommendation systems, finance, surveillance, and robotics use machine learning. Machine learning devices (sometimes understood as scientific models, sometimes as operational algorithms) anchor the field of data science. They have also become mundane mechanisms deeply embedded in a variety of systems and gadgets. In contexts from the everyday to the esoteric, machine learning is said to transform the nature of knowledge. In this book, Adrian Mackenzie investigates whether machine learning also transforms the practice of critical thinking. Mackenzie focuses on machine learners -- either humans and machines or human-machine relations -- situated among settings, data, and devices. The settings range from fMRI to Facebook; the data anything from cat images to DNA sequences; the devices include neural networks, support vector machines, and decision trees. He examines specific learning algorithms -- writing code and writing about code -- and develops an archaeology of operations that, following Foucault, views machine learning as a form of knowledge production and a strategy of power. Exploring layers of abstraction, data infrastructures, coding practices, diagrams, mathematical formalisms, and the social organization of machine learning, Mackenzie traces the mostly invisible architecture of one of the central zones of contemporary technological cultures. -- Provided by publisher.
Note Print version record.
ISBN 9780262342551 (electronic bk.)
0262342553 (electronic bk.)
9780262036825 (hardcover)
0262036827 (hardcover)
OCLC # 1023555155
Additional Format Print version: Mackenzie, Adrian, 1962- Machine learners 9780262036825 (DLC) 2017005343 (OCoLC)972093403

If you experience difficulty accessing or navigating this content, please contact the OPAL Support Team